Eastern High School
AP Physics C Summer Assignment
From Physics for Scientists and Engineers (10*" ed.) by Serway, Jewett
All work is to be done using paper and pencil. Show complete
answers. Show all work. Make your work neat and organized. You will
turn in your work on the FIRST day of class.

e Read Chapters 1 and 2

e Answer/Solve page 17-19 #’s 3, 11, 15, 16, 25, 27

e Answer/Solve page 48-51#’s2,3,4,5,7,9, 11, 13, 14,

17, 23, 26, 28, 29, 32, 39

Thank you. See you in September.
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The disciplines of mechanics and electromagnetism are basic to all

other branches of classical physics (developed before 1900) and modern
physics (c. 1900-present). The first part of this textbook deals with classi-
cal mechanics, sometimes referred to as Newtonian mechanics or simply
mechanics. Many principles and models used to understand mechanical
systems retain their importance in the theories of other areas of physics

and can later be used to describe many natural phenomena. Therefore,
classical mechanics is of vital importance to students from all disciplines. B 1
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1.1 Standards of Length, Mass, and Tir

chapters. This feature will help you see that the textbook is not a collection of
unrelated chapters, but rather is a structure of understanding that we are building
step by step. These paragraphs will provide a roadmap through the concepts andv
principles as they are introduced in the text. They will justify why the material in
that chapter is presented at that time and help you to see the “big picture” of the
study of physics. In this first chapter, of course, we cannot connect to a previous
chapter. We will simply look ahead to the present chapter, in which we discuss
some preliminary concepts of measurement, units, modeling, and estimation that
we will need throughout all the chapters of the text.

EEN Standards of Length, Mass, and Time

lo (l(‘\( T Ih(' Il‘lllll'ill l)h('ll()l"l'llﬂ. we must lll.lk(‘ measurements of various AI\pL'(|\
of nature,

ch measurement is associated with a physical quantity, such as the
length of an object. The laws of physics are expressed as mathematical relation-
ships among physical quantities that we will introduce and discuss throughout the
book. In mechanics, the three fundamental quantities are length, mass, and time. All
other quantities in mechanics can be expressed in terms of these three.

If we are to report the results of a measurement to someone who wishes to
reproduce this measurement, a standard must be defined. For example, if someone
reports that a wall is 2 meters high and our standard unit of length is defined to be
1 meter, we know that the height of the wall is twice our basic length unit. Whatever

is chosen as a standard must be readily accessible and must possess some property
that can be measured reliably. Measurement standards used by different people in
different places—throughout the Universe—must yield the same result. In addi-
tion, standards used for measurements must not change with time.

In 1960, an international committee established a set of standards for the fun-
damental quantities of science. It is called the SI (Systeéme International), and its
fundamental units of length, mass, and time are the meter, kilogram, and second,
respectively. Other standards for SI fundamental units established by the commit-
tee are those for temperature (the kelvin), electric current (the ampere), lnminous
intensity (the candela), and the amount of substance (the mole).

Length

We can identify length as the distance between two points in space. In 1120, the
king of England decreed that the standard of length in his country would be named
the yard and would be precisely equal to the distance from the tip of his nose to the
end of his outstretched arm. Similarly, the original standard for the foot adopted
by the French was the length of the royal foot of King Louis XIV. Neither of these
standards is constant in time; when a new king took the throne, length measure-
ailed until 1799, when the legal standard

ments changed! The French standard prev
of length in France became the meter (m), defined as one ten-millionth of the
distance from the equator to the North Pole along one particular longitudinal line
that passes through Paris. Notice that this value is an Earth-based \l.‘\n(l.ml that
does not satisfy the requirement that it can be used throughout the l'nmv-:w.
Table 1.1 (page 4) lists approximate values of some measured lengths. \m-x should
study this table as well as the next two tables and begin to gencrate an intuition for
what is meant by, for example, a length of 20 centimeters, a mass of 100 kilograms,
or a time interval of 3.2 X 107 seconds.
1960, the length of the meter was defined as the distance \n-|‘\u-¢-n
secific pLuinum—iri(lium bar stored under controlled unuluvmn\
1ology, however, necessitate

As recently as
two lines on a sy !
in France. Current requirements of science and techr >
more accuracy than that with which the separation between the lines on the bar

can be determined. In the 1960s and 1970s, the meter was defined to be equal to
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‘orth Pole 1.00 X 107
Distance from the equator to the North Pole i
Mean radius of the Earth . ) (\.ﬁl/) X I()i'
Typical altitude (above the surface) of a satellite orbiting the Earth 2 X 10°
Length of a football field 9.1 x 10!
Length of a housefly 5 X103
Size of smallest dust particles ~ 10~
Size of cells of most living organisms ~ 10
Diameter of a hydrogen atom ~ 10"
Diameter of an atomic nucleus ~ 104
~10-1

Diameter of a proton

1 650 763.73 wavelengths' of orange-red light emitted from a krypton-86 lamp. In
October 1983, however, the meter was redefined as the distance traveled by light
in vacuum during a time interval of 1/299 792 458 second. In effect, this latest
definition establishes that the speed of light in vacuum is precisely 299 792 458
meters per second. This definition of the meter is valid throughout the Universe
based on our assumption that light is the same everywhere. The speed of light also
allows us to define the light-year, as mentioned in the introductory storyline: the
distance that light travels through empty space in one year. Use this definition and
the speed of light to verify the length of a light-year in meters as given in Table 1.1.
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Some Time Intervals

Mass (kg)

Time Interval (s)

Observable Age of the Universe

Universe ~ 10% Age of the Earth
Milky Way Average age of a college student 6.3 X 10%

galaxy ~ 1012 One year 3.2 x 107
Sun 1.99 % 10% One day 8.6 x 10
Earth 5.08 X 102 One class period 3.0 X 10*
Moo 7.36 X 102 Time interval between normal
Shark ~ 10° . h}uu(lm.nh 8x 107!
— Yot lvr!ml of ;1\1(!|I)Ic sound waves ~ 1078
g Period of typical radio waves =107
Frog . ~ 10" Period of vibration of an atom
Mosquito 107 in asolid -~ 10718
Bacterium ~1:X.10°1 Period of visible light waves ~ 1075
Hydrogen atom  1.67 % 10-%7 Duration of a nuclear collision ~107*
Electron 9.11 X 10°% Time interval for light to cross

a proton ~ 107

Time

Before 1967, the standard of time was defined in terms of the mean solar day. (A
solar day is the time interval between successive appearances of the Sun at the high-
est point it reaches in the sky each day.) The fundamental unit of a second (s) was
defined as ((,‘(,)((,',‘,)( Ii) of a mean solar day. This definition is based on the rotation
of one planet, the Earth. Therefore, this motion does not provide a time standard
that is universal.

In 1967, the second was redefined to take advantage of the high precision attain-
able in a device known as an atomic clock (Fig. 1.1b), which measures vibrations of
cesium atoms. One second is now defined as 9 192 631 770 times the period of
vibration of radiation from the cesium-133 atom.” Approximate values of time
intervals are presented in Table 1.3.

You should note that we will use the notations time and time interval differently. A

time is a description of an instant relative to a reference time. For example, ¢t = 10.0's
refers to an instant 10.0 s after the instant we have identified as ¢ = 0. As another
example, a time of 11:30 a.m. means an instant 11.5 hours after our reference time
of midnight. On the other hand, a time interval refers to duration: he required
30.0 minutes to finish the task. It is common to hear a “time of 30.0 minutes” in
this latter example, but we will be careful to refer to measurements of duration as

time intervals.

Units and Quantities In addition to SI, another system of units, the U.S. custom-
ary system, is still used in the United States despite acceptance of SI by the rest of the
world. In this system, the units of length, mass, and time are the foot (ft), slug, and
second, respectively. In this book, we shall use SI units because they are almost uni-
versally accepted in science and industry. We shall make some limited use of U.S.
customary units in the study of classical mechanics.

In addition to the fundamental SI units of meter, kilogram, and second, we can
also use other units, such as millimeters and nanoseconds, where the prefixes milli-
and nano- denote multipliers of the basic units based on various powers of ten.
Prefixes for the various powers of ten and their abbreviations are listed in Table 1.4
(page 6). For example, 107° m is equivalent to 1 llli”illl.('l('l‘ ‘(mmi, and 10° m corre-
sponds to 1 kilometer (km). Likewise, 1 kilogram (kg) is 10° grams (g), and 1 mega

volt (MV) is 10° volts (V).

2Period is defined as the time interval needed for one complete vibration
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The variables length, mass, and time are examples of fundamental quantities. Most
other variables are derived quantities, those that can be expressed as a mathematical
combination of fundamental quantities. Common examples are area (a product of
two lengths) and speed (a ratio of a length to a time interval).

Another example of a rl‘rrm-(l quantity is density. The density p (Greek letter
rho) of any substance is defined as its mass per unit volume:

P (1.1)
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oo s \); fundamental quantities, density is a ratio of a mass to a product of three
engths. u. - i ‘ :
: ]s ’ minum, for example, has a density of 2.70 X 10° kg/m? and iron has
a density of 7.86 x 10° 3 o s o
g e kg/m’. An extreme difference in density can be imagined
ing about holding a 10-centimeter (cm) cube > y i .
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1.2 Modeling and Alternative Representations

A scientific model is a theoretical construct and may have no v isual similarity to the
physical problem. A simple application of modeling is presented in Example 1.1,
and we shall encounter many more examples of models as the text progresses.

Models are needed because the actual operation of the Universe is extremely
complicated. Suppose, for example, we are asked to solve a problem about the
Earth’s motion around the Sun. The Earth is very complicated, with many pro-
cesses occurring simultaneously. These processes include weather, seismic activity,
and ocean movements as well as the multitude of processes involving human activ-
ity. Trying to maintain knowledge and understanding of all these processes is an
impossible task.

The modeling approach recognizes that none of these proc
motion of the Earth around the Sun to a measurable degree. Therefore, these
details are all ignored. In addition, as we shall find in Chapter 13, the size of the
Earth does not affect the gravitational force between the Earth and the Sun; only
the masses of the Earth and Sun and the distance between their centers determine
this force. In a simplified model, the Earth is imagined to be a particle, an object
s but zero size. This replacement of an ¢ ctended object by a particle is
ctensively in physics. By analyzing the
arth in orbit around the Sun, we find

>s affects the

with ma
called the particle model, which is used e
motion of a particle with the mass of the
that the predictions of the particle’s motion are in excellent agreement with the

actual motion of the Earth.
The two primary conditions for using the par ticle model are as follows:

s The size of the actual object is of no consequence in the analysis of its

motion.
e Any internal processes occurring in the object are of no consequence in the

analysis of its motion.
Both of these conditions are in action in modeling the Earth as a particle. Its radius
is not a factor in determining its motion, and internal processes such as thunder-
storms, earthquakes, and manufacturing processes can be ignored.
Is used in this book will help us understand and solve

Four categories of model
ve form

Jhysics problems. The first category is the geometric model. In this model, v

I I g

presents the real situation. We then set aside the
Consider a

a geometric construction that re
real problem and perform an analysis of the geometric construction.
popular problem in elementary tr igonometry, as in the following example.

1 Finding the Height of a Tree

You wish to find the height of a tree but cannot measure it dire

line of sight from the ground to the top of the tree makes an angle of 25.0° with the ground. How tall is the tree?

Figure 1.2 shows the tree and a right triangle correspond-
ing to the information in the problem superimposed over it.

(We assume that the tree is exactly perpendicular toa per fectly /
flat ground.) In the triangle, we know the length of the hori-
and the angle between the hypotenuse and the hori-

zontal leg. We can find the height of the tree by calculating the
length of the vertical leg. We do so with the tangent function:

zontal leg 2

50.0 m

opposite side h
tan 6

the top above the ground

25.0 233 m
geometrically modeling the actual problem

h= (50.0 m) tan @ = (50.0 m) tan 2

—

tly. You stand 50.0 m from the tree and determine that a

L]

\djacentside  50.0 mn Figure 1.2 (Example 1.1) The height of a tree can be found by
measuring the distance from the tree and the angle of sight to
This problem is a simple example of
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second category of models, which we
a simplification model, details that are not sig-
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outcome of the problem are ignored. When we study

nificant in determining the

rotation in Chapter 10, objects will be
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atin, which is not a rigid object. Other simplification models

modeled as rigid objects. All the molecules in
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will assume that quantities such as friction forces are negligible, remain constant,
or are proportional to some power of the object’s speed. We will assume uniform
metal beams in Chapter 12, laminar {low of fluids in Chapter 14, massless springs in
Chapter 15, symmetric distributions of electric charge in Chapter 23, resistance-free
wires in Chapter 27, thin lenses in Chapter 34. These, and many more, are simplifi-

cation models.

The third category is that of analysis models, which are general types of prob-
lems that we have solved before. An important technique in pn)hlcml solving is to
casta new problem into a form similar to one we have already solved and which can
be used as a model. As we shall see, there are about two dozen analysis models that
can be f""" to solve most of the problems you will encounter. All of the analysis
models in classical physics will be based on four simplification models: /mr;ir[:' 4‘.'l-
tem, ngid object, and wave. We will see our first analysis models in (:I]l\[;l&'l' 2y \»h(:v‘:

we will discuss them in more detail.
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scale than our macroscopic world

r ions

epresentations of the problem th
mc?hud of viewing or presenting th
entists must be able to comn
tific backgrounds. The
;lnu’\\hl”\ will vary from one
Y a well-c £

. {lrawn graph, and
persuaded to agree with a

physici
I Sts may not be convinced by

information.

A word problem, such as

. o t p o
representation of hose at the

a problem, In he
dresentatio,

. 5 d N ¢
s the effects of climate .
identify the

tion, the initja| rey
change or ;
import s
i tant data ang infor
Juivalent worg problem!

I — s

ancient geocentric model of the Universe, in which t}
3 e

; E:
ample of a str g or s i
I a structural model for s omething larger in

In ely re
timately related to the notion of mode!

lunicate complex ide.
best representation to yse
individual to (he
)fhvrx will require
Point of view by ¢
this m

Ihe ends of the ch
real world™ (h
a problem

»and then cagy the

rthis theorized to be at the

i .,I,':g“i,‘,\.l-m of forming alternative
3 4re solving. A representation is a
¢ information related to the problem. Sci-
as to individuals without scien-
In conveying the information
next. Some will be convinced
4 picture. Physicists are often
lllull:l::::ﬁ a:‘n) v-quzuinn., but non-
al representation of the

apters in this book, is one

at you will e i

) ) enter after gradua-
¢ ay be just n
ient in danger
Mation

an existing situation, such
of dying. You may have to
situation yourself

sroblem, we do not imagine Seve

* Mental representation. From the description of the problem, imagine a
scene that describes what is happening in the word problem, then let time
progress so that you understand the situation and can predict what changes
will occur in the situation. This step is critical in approaching every problem.

* Pictorial representation. Drawing a picture of the situation described in the
word problem can be of great assistance in understanding the problem. In
Example 1.1, the pictorial representation in Figure 1.2 allows us to identify
the triangle as a geometric model of the problem. In architecture, a blueprint

is a pictorial representation of a proposed building.

Generally, a pictorial representation describes what you would see if you
were observing the situation in the problem. For example, Figure 1.3 shows a
pictorial representation of a baseball player hitting a short pop foul. Any coor-
dinate axes included in your pictorial representation will be in two dimen-
sions: xand yaxes.

o Simplified pictorial representation. Itis often v
rial representation without complicating details
tion model. This process is similar to the discussion of the particle model
described earlier. In a pictorial representation of the Earth in orbit around

‘th and the Sun as spheres, with possibly

ful to redraw the picto-
s applying a simplifica-

the Sun, you might draw the
some attempt to draw continents to identify which sphere is the Earth.

In the simplified pictorial representation, the Earth and the Sun would

be drawn simply as dots, representing patticles, with appropriate labels.
Figure 1.4 shows a simplified pictorial representation corresponding to the
pictorial representation of the baseball trajectory in Figure 1.3. The nota-
tions v_and v, refer to the components of the velocity vector for the baseball.
We will study vector components in Chapter 3. We shall use such simplified
pictorial representations throughout the book.

« Graphical representation. In some problems, drawing a graph that describes
the situation can be very helpful. In mechanics, for example, position—time
graphs can be of great assistance. Similarly, in thermodynamics, pressure—
volume graphs are essential to understanding. Figure 1.5 shows a graphical
representation of the position as a function of time of a block on the end of a
vertical spring as it oscillates up and down. Such a graph is helpful for under-
standing simple harmonic motion, which we study in Chapter 15.

A graphical representation is different from a pictorial representation,
which is also a two-dimensional display of information but whose axes,
any, represent length coordinates. In a graphical representation, the 4
represent any two related variables. For example, a graphical representation

have axes for temperature and time. The graph in Figure 1.5 has axes

and time (. Therefore, in comparison to a pictorial rep-

may

mz
of vertical position y
resentation, a graphical representation is generally not something you would
see when observing the situation in the problem with your eyes.
© Tabular representation. It is sometimes helpful to organize the information
in tabular form to help make it clearer. For example, some students find that
is helpful. The

making tables of known quantities and unknown quantities

periodic table of the elements is an extremely useful tabular representation

of information in chemistry and physics.

s Mathematical representation. The ultimate goal in solving a problem is
often the mathematical representation. You want to move from the infor-
mation contained in the word problem, through various representations of
the problem that allow you to understand what is happening, to one or more

equations that represent the situation in the problem and that can be solved

mathematically for the desired result.

al types of representations can be of assistance in this endeavor: 2

¢ g

Figure 1.3 A pictorial represen

tation of a pop foul being hit by a

bascball player.

Figure 1.4 Asimplificd pictorial
representation for the situation
shown in Figure 1.3

Figure 1.5 A graphical represen-
tation of the position as a function
of time of a block hanging from a
spring and oscillating.
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PITFALL PREVENTION 1.2
Symbols for Quantities Some

antities have a small nur

T

s tha

sent them

¢ symbol for time
Other quanti
arious symbols

usage. Length

——

Physics and Me
ysics &

m Dimensional Analysis

nsion denotes t
for example,

he ph\si(-ul nature of a quantity. The dis.
can be measured in feet, meters, or fur.
1 different units for expressing the dinujnsi(ln»ul’ length.

pecify the dimensions of length, mass, anq
M. and T, respectively s We shall often use brackets [ ‘] to dk'llu_l(- the
antity. For example, the symbol we use for speed in this
and in our notation, the dimensions of speed are written [v] = L/T. As
the dimensions of area A are [A] = L% The dimensions and units
are listed in Table 1.5. The dimensions of
scribed as they are introduced

In physics, the word n’f"::
tance between two points,
longs, which are al

The symbols we use 1n this book 10§
time are L,
dimensions of a physical qu
book is v,
another example,
of area, volume, speed, and acceleration
other quantities, such as force and energy, will be de:
in the text

In many situations, you may have to check a specific equation to see if it

matches vour expectations. A useful procedure for doing that, called dimen-
sional analysis, can be used because dimensions can be treated as algebraic
quantities. For example, quantities can be added or subtracted only if they have
the same dimensions. Furthermore, the terms on both sides of an t"llli"iol; must
have the same dimensions. By following these simple rules, you can use dimen-
sional analysis to determine whether an expression has the correct form. Any
relationship can be correct only if the dimensions on both sides of the (‘qll;l[i()l‘l
are the same.

To illustrate this procedure, suppose you are interested in an equation for the
position xof a car ata time if the car starts from rest at x = () and moves with con-
as we show

stant acceleration a. The correct expression for this situation is x = % a
in Chapter 2. The quantity x on the left side has the dimension of fz-nglh For the
r,qu.qlnnn 0 be dimensionally correct, the quantity on the right side must ;;Isu have
:I::‘]i :)r\x::::u!::’x of |l:|1:4lh We can })v{fﬂl;:l ;|—tlim(-nsimml check by substituting the

1s for acceleration, L/T? (Table 1.5), and time, T, into the equation. That

is, the dimensional form of the equation x = Latis

T'he dimensiol
ns of time cancel i
é as shown, leaving the dimensi
right-hand side to match that on the left TRt i s

A more gene
general procedure usi i 3

ing dime: soe
ofthe farm § dimensional analysis is to set up an expression
X% q"t™

where nand ma
a are expone:
a proportionality. lhi{ u]f]l:l»\ ”‘-"v must be determined and the sy mbol = indicates
ationship is correct only i the dimensi f bott ("ll s
‘nsions of both sides

are same. Bec on of the left side s length, the dimension of the
ause the dime gth,
e sion of the

ght side must als: 1gth. That is -

[at™] =

m Dimensions and Units of Four D

= L0

erived Quantities

Quantity —_
—_— Area () v
Dimensions e SR Volme e
SI s \7‘11“;"‘. L) SPQEd (@) !\(‘(‘L‘l(‘r‘lll(m
U.S. customary ynit m “-"‘ L/t L T"
— ft m/s ”l‘ s
B~ ft/s
—— ft/s

e o SUS

d, noni
talic letter such asLorT

ength of an o} symbol

The algebraic
DJeCtor ¢ for time

1.3 Dimensional Analysis

Because the dimensions of acceleration are L/T? and the dimension of time is T,

we have

L/TH'T*=L'T° — (L T~ 2)=L'T

The exponents of L and T must be the same on both sides of the equation. From
the exponents of L, we sce immediately that » = 1. From the exponents of T, we see
that m — 2n = 0, which, once we substitute for n, gives us m = 2. Returning to our

original expression x = a"t”, we conclude that x * at*.

(DUICK QUIZ 1.2 Truc or False: Dimensional analysis can give you the numer-
ical value of constants of proportionality that may appear in an algebraic

e expression.

"[EELEEIES Analysis of an Equation

Show that the expression v =
correct.

UTION

5
Identify the dimensions of v from Table 1.5: >

Bl=3

£ E ; L.,
Identify the dimensions of a from Table 1.5 and multiply [al] = T 1

by the dimensions of &

Therefore, v = at is dimensionally correct because we h,
as v = af, it would be dimensionally incorrect. Try

AN PE] Analysis of a Power Law

Suppose we
to some power of 7, say r”,
equation for the acceleration.

Write an expression for a with a dimensionless constant

of proportionality k:

Substitute the dimensions of a, r, and v:

n+m=landm= 2

Equate the exponents of L and T so that the dimensional

| equation is balanced:

Solve the two equations for n: n= -1
1 2 ,’2
a=kr'v: =k

r

Write the acceleration expression:

| In Section 4.4 on uniform circular motion, we show that k = 1 if a consistent set of units is used. T he constant k
L&-qn.xl 1 if, for example, vwere in km/h and you wanted ain m/s*

"

at, where v represents speed, a acceleration, and f an instant of time, is dimensionally

ave the same dimensions on both sides. (If the expression were given

are told that the acceleration a of a particle moving with uniform speed vin a circle of radius ris proportional
and some power of v, say ™. Determine the values of n and m and write the simplest form of an

would not




1.6 Significant Figures 13

12 Chapter 1 Physics and Measurerm ent
m C(mversmll Of Umts may h(: made even more approximate by expressing it as an order of magnitude,
which is a power of 10 determined as follows:

its from one measurement system to anothey

PITFALL PREVENTION 1.3
6 Units When pe . e » 3
Always Include Uni I from kilometers 10 me ters). (‘””‘"'l\ll)n

1h numer

1. Express the number in scientific notation, with the multiplier of the power
of 10 between 1 and 10 and a unit.
2. If the multiplier is less than 3.162 (the square root of 10), the order of mag-

Sometimes it is necessary o convertun
a system (for example,
jary units o

f length are as follows:

or convert within

e the units for
and carty the unha factors between Sl and U.S. custon
i ) the entire caleulatio ( 1M 0,304 8 m = 3048 cm : ! 4
’ ” | mile = 1609m = 1.609 km : & _op e nitude of the number is the power of 10 in the scientific notation. If the
1 thie tempration to drop the 40,47 3,981 ft lin 0,025 4m = 2.54 cm (exactly) e e g ¥ s .
i early and then attsch the I'm 30.57 10, L i multiplier is greater than 3.162, the order of magnitude is one larger than
tedd units emce you hay 7 ; - found in Appendix A. the power of 101 > scientifi ati
’ iRk ‘”“: "x A more complete list of conversion factors ;.m Iul fi )'l" s ’ll I[i(i(\ e P 10 in the scientific notation.
anwwer By including the units . (reated as algebraic quantities that can can- oiai S -
every step, you can detect errors if Like dimensions, units can be treatec ' 14 : '-nll-",() mehe (‘ "> can We use the symbol ~ for “is on the order of.” Use the procedure above to verify
e nits for the answer urn oot cel each other. For example, suppose we wish 1o convert 1o k. cntimeters, the orders of magnitude for the following lengths: g
10 be Incorrect Because 1 in, is defined as exactly 2.54 cm, we find that ) )
0.0086m ~ 107 m 0.0021m~10"*m 720 m ~ 10°m
<o 254cm | _ i R x p .
15.0in, = (15.0 bt )| i = 38.1 cm Usually, when an order-of-magnitude estimate is made, the results are reliable to
g within about a factor of 10.
where the ratio in parentheses is equal to 1. We express 1 as 2.54 cm/1 in. (rather ]n;llccur;\cws caused; by BUSIIDE, l:)o IOA“' for bne nlu.'nh(‘r At often;eanceled
than 1in./2.54 ¢m) so that the unit “inch” in the denominator cancels with the uni by other guesses that are too high. You will find that with practice your guessti-
o tes become b 1 better. Estimation probl I !
in the original quantity. The remaining unit is the centimeter, our desired resu mates become better and beter. Estimation problems can be fun to work because
4 I ) B L e e
you freely drop digits, venture reasonable approximations for unknown numbers,
@UICK QUIZ 1.3 The distance between two cities is 100 mi. What is the number make simplifying assumptions, and turn the question around into something you
© of kilometers between the two cities? (a) smaller than 100 (b) larger than 100 can answer in your head or with minimal mathematical manipulation on paper.
# () equal to 100 Because of the simplicity of these types of calculations, they can be performed on a
small scrap of paper and are often called back-of-the-envelope calculations.

| IETITIEIEY Is He Speeding? [ [EEIIEEE Breaths ina Lifetime

On an interstate highwa A  Wyomi ol i sti i ifeti
hway ina rural region of Wyoming, a car is traveling at a speed of 38.0 m/s. Is the driver exceeding the Estimate the number of breaths taken during an average human lifetime.

speed limitof 75.0 mi/h?
(50LUTI0N] e
We start by guessing that the typi

son takes in 1 min. This number
To the nearest order of magnitude, we shall choose 10 br
the true average value than an estimate of 1 breath per minute or 100 breaths per minute.)

52 (‘100 d-?\j (2:’; 1] ((i‘) min ) 6% 10°mi
y Tyr I day Th ) min

number of minutes = (70 yr)(6 % 10* min/yr)
=4 % 10" min

. Think about the average number of breaths that a per-
xercising, sleeping, angry, serene, and so for th,
stimate. (This estimate is certainly closer to

1 human lifetime is about 70 y
ries depending on whether the person is
hs per minute as our e

Convert meters to miles and seconds to hours: (38.0m/5) ( I mi ) 605
1609 m /\ 1 min

The diiv rd excee i
et isindeed exceeding the speed limit and should slow down

IEEEXMEEE What if the driver were from outside the United States and is

familiar with speeds measured e St
N n Kilometers pes 2\ i
i i per hour? What is the speed of the

g

Find the approximate number of minutes in a

Answer W\ Find the approximate number of minutes in a 70-year
© can convert our final answer to the appropriate units: lifetime:
(85.0 mi/h) 1,609 km ) 137k Find the approximate number of breaths in a lifetime: number of breaths = (10 breaths/min)(4 % 107 min)
R =407 K
Lot X = 4 % 10" breaths

a lifetime. Notice how much simpler itis in the first cale ulation above

Therefore, a person takes on the order of 10” breaths i

Fig
to multiply 400 X 25 than itis to work with the more accurate 365 ¥ 24,

e 1.6 shows an awtomobile s peedometer displaving speeds in both mi/h
g al T disg g Sp I i d
¥ D and

b Lan you check the converss St pe od using this arap!
b nerion we just performed
using this photog; D
g s graph:
707 Would that change our final estimite

WS ETEN What if the average lifetime were estimated as 80 years instead of
5 % 107 min, so our final estimate should be 5 % 10% breaths, This

Answer We could claim that (80 yr)(6 X 10 min/yr) =
order of 10? breaths, so an order-of-magnitude estimate would be unchanged

answer is still on the

m“ The speedometer of a vehicle —
Shows speeds in both miles per hour

and kilometers per hour.
EX7 significant Figures

01- i .
f Magnltude calculatlons When certain quantities are measured, the measured values are known only to

within the limits of the experimental uncertainty, The value of this uncertainty
can depend on various factors, suc h as the quality of the apparatus, the skill of
the experimenter, and the pumber of measurements performed. The number of

8 Estimates and Order-

Suppose som
3 Reone asks voy th
response, i is pot ¢ number of bits of
© S DOX general} LS of %
rather an es Uy expected thae o hm‘gu 0 2 typical Blu-ray Disc. In
Provide the e
xact number but

o sci :
entific notation. The estimate

§




ment can be used to express something
re -

about ¢l

e b 5o fic figures is related to the number of llln”‘.]]l;_
; < the measurement, as we discuss below

o \\‘ ‘ ‘“'\‘" C it 1res, SUppose we are asked to measure the radiug

¢ Sk Disc us . 1 meterstick as 2 measuring instrument. Let us assume the

" 1 ‘4 an measure the radius of the disc is 0.1 cm. Be S

£ +0 . if the radius is measured to be 6.0 cm, we

can clajy
tween 5.9 cm and 6.1 cm. In this case,

v\\lHN\‘.tTl

we
say that the measured value of 6.0 cm has two significant figures. Note that ¢,
5 the first estimated digit. Therefore, we could write llwv.ulim.l\
) % 0.1
D s yoren y not be significant figures. Those used to position the decima)
tins . bers as 0.03 and 0.007 5 are not significant. Therefore there are
) nd two s nt figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of m|~inn-|]m-l.xuun. For
example, suppose the mass of an object is given as 1 500 g. This \.x]m-ixlnnlngnnu\
becausc do n 0 1ether the last two zeros are being used to locate the
decir i ether they represent significant figures in the measurement,
1o remove this ambiguity, it is common to use

scientific notation to indicate the
res. In this case, we would express the mass as 1.5 x 10° g
ires in the measured value, 1.50 X 10° g if there are

\ree 500 X 10° g if there are four. The same rule holds
for r 107 has two significant figures (and therefore
‘ ) and 2.30 X 10" has three significant figures (and there-
fore

I

often combine quantities mathematically throug

gh mul-
iction, and so forth. When doing so,

you must
PPropriate number of significant figures. A good
ning the number of significant figures that can be
on or a division is as follows

n, subtrz
1s the

tiplying several ¢
final answer is the

{uantties, the number of significant figures in the
same as the number of signific

the s est 1
8 the smallest number of significant figures

ant figures in the quantity
The same rule applies to

10 find the

area of the
trea of the Blu-ray Disc whose radius we mea-
i

fie area of a circle,

V=71 = 2(6.0 cm L1 X 102 ¢m2
Ifyou perform this calcul
2 your calculator youwilllikely see 113.097 335 5.
x o rece " Want to keep all of these digits, but vou might
d S 8 ".“\ 19 €m=. This resuly is not justified because it

radius only has two, Therefore, we must
as shown above.
consider the

Significane fj

gnificant figyres
Ou must

wumber of decimal places

ures to report:

he numbey of

st 1[((xlll.1|p]‘|((-\i 1 the
mber ¢ n :
¢ fdecima) Places of any term in the
t sun
2+ 5174 R 4
$28.374
o YeCausce the lowest number of dec-
Fanswer m, . .
‘1I\!|mu'un[\t)ll(-,]‘.‘“”v place.

The rule for

addition and subtraction
different numbe

an often result in answers that have a
‘lll!||r4||L1|Ilili(‘~\\|lh\\huh\ull\Mll For

operations that satisfy the rule:

rof significant figures th
example, consider these

1000 1 + 0.000 3 = 1.000 |
1.002 - 0.998 = 0.004
In the first ¢ xample, the

result has five significant fig
the terms, 0.000

gures even though one of
3, has only one significant figure. Similarly, in the sec ond calcu-
lation, the result has only one significant figure even though the numbers being
subtracted have four and three, respectively.

In this book, most of the

merical examples and end-of-c hapter problems

will yield answers having three significant figures. When carrying out estima-

tion calculations, we shall typically work with a single significant figure.

If the number of significant figures in the result of a calc ulation must be reduced,
there is a general rule for rounding numbers: the last digit retained is increased by !
1 if the last digit dropped is greater than 5. (For example, 1.346 becomes 1.35.) SY'“F’"“C Solutions W
If the last digit dropped is less than 5, the last digit retained remains as it is. (For st bac) A

example, 1.343 becomes 1.34.) If the last di

git dropped is cqual to 5, the remaining o
digit should be rounded to the nearest even number. (This rule helps avoid accu- dt
mulation of errors in long arithmetic processes.) fir mt

In a long calculation involving multiple steps, it is very important to delay the s method will
rounding of numbers until you have the final result, in order to avoid error accumu- oreyits ; s

lation. Wait until you are ready to copy the final

quantities ¢
rounding to

answer from your calculator before
the correct number of significant figures. In this book, we

display
numerical values rounded off 1o two or threc signific

ant figures. This occasion
ally makes some mathematical manipulations look odd or

incorrect. For instance o
looking ahead to Example

3.5 on page 62, you will see the operation —17.7 km
34.6 km = 17.0 km. This looks like an incorrect subtraction, but that is only because
we have rounded the numbers 17.7 km and 34.6 km for display. If

all digits in these
two intermediate numbers are retained and the rounding

is only performed on the
final number, the correct three-digit result of 17.0 km is obtained

Installing a Carpet

7 widt easure
to be installed in a rectangular room whose length is measured to be 12.71 m and whose width is measu

6 m. Find the area of the room

iltiply 12.71 m by 3.46 m on your calculato i answer of 43.976 6 m?. How many of thesc
lair 1 € L ) f si fic t ¢
ou claim? Our rule of thumb for multiplication tc u can claim only the number i
present in the measured quantity hay est number of significant figures. In this exar )
mswer ¢ present in the s u
1 ficant figures is three in 3.46 m, so we should express our final answer as 44
number of
l quantit hanics are length, The density of a substanc !

the SI system | meter

second (s), respe

efined in terms of i

15
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» Concepts and Principles

phys

owerful in
asic quantities. By

I method of dimensional analysis is vC

L yimensions can be treated as algebr
irates and performing order-ofmagnitude calculations,
ou sho | oroximate the answer to a problem when

an exact solution

Jable to specify

| understanding can be improved

Problem-solving skills and physical
modeling the problem and by constructing alternative represen-
tations of the | m. Models helpful in solving problems include

geometric, simplification, analysis, and structural models. Helpful
wclude the mental, pictorial, simplified pictorial,

tations

graphical, tabular, and mathematical representations.

Think-Pair-Share

an explanation of the icons used in this problems set

s for thissection, go 10 3% WEBASSIGN

2 stack of cc

paper, ruler, com

sensitive balance. He cuts out various

I arious sizes, calculates their areas, measures

es the graph of Figure TF

n the top. How
ght lin

from the it st Express
e X
if « tical-axis coordinate. (b)
¥ e. (¢) Calculate the slope
hel S o
' demonstrates, referring
: v‘ ates, referring
I results of parts (b) and
) hahert
esult should be expected the
e e the physical mear f the sl
ning of the slope
1 f mass or
'

Figure TP1.1

compute a result from several measured

When you
, of which has a certain accuracy, yoy

numbers, eact

{ give the result with the correct number of sig-

shoulc
nificant figures.
several quantities, the number of sig-

When multiplying
final answer is the same as the

nificant figures in the
number of significant figures in the quantity having the
smallest number of significant figures. The same rule
applies to division.

When numbers are added or subtracted, the number
of decimal places in the result should equal the smal-
est number of decimal places of any term in the sum or

difference.

2. [RBH Have cach person in the group measure the

height of another person using a meter stick with metric
distances on one side and U.S. customary distances, such
as inches, on the other side. Record the height to the near-
est centimeter and to the nearest half-inch. For each per-
son, divide his or her height in centimeters by the height in
inches. Compare the results of this division for everyone in
your group. What can you say about the results?

LALLM Gather together a number of U.S. pennies, either

from your inst
T instructor or from the members of your group.

Div v

Iu ide up the pennies into two samples: (1) those with

dates of 1981 of 5 8.
{1981 or carlier, and (2) those with dates of 1983

and late
pennies from your sample). Find the

(exclude 1982
total mass of all the

pennies in each sample. Then divide
cach of these

‘ tal masses by the number of pennies in its
orresponding sample, to find the
each sample. Discuss why the
two samples

LOTRT Discuss N your group the process by

You can obtain the

a single sheet of

average penny mass in
results are different for the

: which
best measurement of the thickness of
ape =

Paper in Chapters 1-5 of this book. Per-

neasuremer n g
imber of sign 'entand express it with an appropriate

form that

icant figures

and uncertainty. From that

\casurement, predicy gl
Volume 1 of [ 'Ct the total thickness of the pages in
f this book (¢ .
edictior hapters 1-21). After making your

measure t}

thickness of Volume 1

€ range of 1
g¢ ofyour prediction and

ur mea-

15 associ-

taingy?

Problems

See the Preface for an explanation of the icons used in this problems set.
For additional assessment items for this section, go to >% WEBASSIGN
A fromCorgape

Note: Consult the

wpapers, appendices, and tables in the

text whenever necessary in solving problems. For this chapter,

Table 14.1 and Appendix B.3 may be particularly useful. Answers

L

odd-numbered problems appear in the back of the boc

SECTION 1.1 Standards of Length, Mass, and Time

(a) Use information on the endpapers of this book to cal-
culate the average density of the Earth. (b) Where does the
value fit among those listed in Table 14.1 in Chapter 142
Look up the density of a typical surface rock like granite in
another source and compare it with the density of the Earth

A proton, which is the nucleus of a hydrogen atom, can be
modeled as a sphere with a diameter of 2.4 fm and a mass
of 1.67 X 10
(b) State how your answer to part (a) compares with the

kg. (a) Determine the density of the proton

density of osmium, given in Table 14.1 in Chapter 14

Two spheres are cut from a certain uniform rock. One has
radius 4.50 cm. The mass of the other is five times greater.

Find its radius.

What mass of a material with density p is required to make
a hollow spherical shell having inner radius r, and outer

radius r,?

You have been hired by the defense attorney as an expert wit-
ness in a lawsuit. The plaintiff is someone who just returned
from being a passenger on the first orbital space tourist flight

Based on a travel brochure offered by the space travel com-
pany, the plaintiff expected to be able to see the Great Wall of
China from his orbital height of 200 km above the Earth’s sur-
face. He was unable to do so, and is now demanding that his
fare be refunded and to receive additional financial compen-
sation to cover his great disappointment. Construct the basis
for an argument for the defense that shows that his expecta-
tion of seeing the Great Wall from orbit was unreasonable. The
Wall is 7 m wide at its widest point and the normal visual acuity
of the human eye is 3 X 104 rad. (Visual acuity is the smallest
subtended angle that an object can make at the eye and still be
recognized; the subtended angle in radians is the ratio of the
width of an object to the distance of the object from your eyes.)

SECTION 1.2 Modeling and Alternative Representations

6.

A surveyor measures the distance across a straight river by
the following method (Fig. P1.6). Starting directly across
from a tree on the opposite bank, she walks d 100 m
\Jong the riverbank to establish a baseline. Then she sights
her baseline to the tree is

across to the tree. The angle frox

0 35.0°. How wide is the river

.

d—

-
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7. A crystalline solid consists of atom ke
ing lattice structure. Consider a cr 1S
ure P1.7a. The atoms reside the cor f "
1 0.200 nm. One piece of ¢ ¢ t
arrangement of atoms comes from the flat surfaces
which a crystal separates, or cleaves, when it is broken. Suj
pose this crystal cleaves along a face diagonal as
Figure P1.7b. Calculate the spacing d between two adjace
atomic planes that separate when the crystal cleaves
v
Figure P1.7
SECTION 1.3 Dimensional Analysis
8. The position of a particle moving under uniform accelera
tion is some function of time and the acceleration. Suppose
we write this position as x = ka™t", where kis a dimension
less constant. Show by dimensional analysis that this expres
sion is satisfied if m = 1 and » 2. Can this anz g
value of k?
9.

10.

Which of the following equations are dimensionally cor
(2 m) cos (kx), where & 2

rect? (a) v,= v, + ax (b) y

(a) Assume the equation x = At® + Bt describes the m

of a particular object, with x having the dimension o
and ¢ having the dimension of time. Determine the din
sions of the constants A and B. (b) Determine the dimen

sions of the derivative dx/dt = 3A B.

SECTION 1.4 Conversion of Units

A solid piece of lead has a mass of 23.94 g and a volume of
2.10 em®. From these data, calculate the density of lead in SI
units (kilograms per cubic meter
Why is the following situ s dol
tory room measures 3.8 m by ing i
high. After the student co n !
displays his dedication by ¢ perir !
walls of the room with the pag i
(Chapters 1-21) of this textbook. He covers t foor
and window
cubic meter (1.00 m®) of aluminum has a mass of
10° kg, and the same volume of iron 1 mass of
10 Find the radius of a solid aluminum sphere
that will balance a solid iron sphere of radius 2.00 cm on an

equal-arm balance
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we would change the
) change the ny by equal increments made of
. e Ot cases. Now consider an order-of:; agnitude estimate, i le the she
which factors of ¢} N8e rather than increments are impo,
tant. We 500 10 because ‘.wu,.»:(w‘,”u‘ 100 contents, a f
L N 0 ;,“\1 ctor hil it differs from 1000 by only a factor of doc v
fsin 0 <« Ve write im 0" m and 305 m 10 m. What dis Axim 1
’ tance differs from 10« and from 1 000 m by eq al factors part (c) agree
2 Review. The he number of sparrows v a birg s0 that we could equally well choose to represent its order of mass of a solid sphere
fee th er of w; interesti On gn 10*m or as ~ 10* mz material as the shell. (e) What If?
: iltogether 91 birds visit the feed i ! s
- g wh ge er, what is S0 (@) Whatis the order of magnitude of the numbe icr N
organisms ir
mates and Order-of-Magnitude Calculations ¢

26. Review. Prove that one solt

' the human intestinal tract? A ty pi ria AnerwA
ition of the equation length scale is 10 Estimate the intestinal volume and 35, Air is blown int eric >
: =1 200 — 300 + 5.00x = 70.0 assume 1% of it is occupied by bacteria. (b) Does the iy EXd is 6.50 cm 8
T and 18 v anti- 2.00x 7 ber of bacteria suggest whether the bacteria are benefics 1 () Find the hic
ke : - dangerous, or neutral for the human body? What functions increasing olume
== o could they serve? balloon is constant
17 e of the mass at 27. Review. From the set of equations ing when the radius is 13.0 cm? (¢) I
v ) a 31. The distance from the Sun to the nearest star is about 1 the answer to part (b) is larg
g p=3g 10 m. The Milky Way galaxy (Fig. P1.31) is roughly a disk
s o hid itis differen
_— of diameter 10* m and thickness ~ 10 m. Find the order of
s reside : magnitude of the number of stars in the Milky Way. Assume 36. In cs, it is important to use
E Fe i pr + " the distance between the Sun and our nearest neighbor tions. (a) Demonstrate t} g
Ph.D = i gy is typical
involving the unknowns p, ¢, r, 5, and ¢ find the value of the
ratio of (1o »

¥ g » game from the latest
[CR| :

Distracted Review. Figure

. where a is in radians and ' is in deg 1
PL28 shows students studying the ther- : ek :
g : ; : - tor to find the g angle hi
3 al ¢ ction of energy into cyl scks of
The game : 8 > cylindrical blocks of ice. As imatec x with an error less than 10.0
& rowded Beld © Wit see in Chapter 19, this process is described by the
T it 37. The consumption of natural gas by
Sun. You say to him I 5
s alist Bl empirical equation V 5 ).008 00
2 4 Q kmd(T, -7 volume of n millions bic fe
( ' f3 have o =~
i A T months. Express this equation in units o
onds. Assume a montl s
¢ 1, Just For experime |
[ T oL In one set of trials all quantities
gi= an sxeept dand Atare constant. (a) If d is made three times

does the ¢

t-shaped

juation predict that At will get la

sures the angle of eleva f the
1 or v i
‘ n r After walking 1.00 km closer
i 6 AU and ) hat factor? (b) What pattern of propor Figure P1.31 The ik tay galons Aftr walking 100 km cloer 10 "
L ‘[ tionality of Atto d does th €quation predict? (c) To display ground, e s e s b ‘
; ol this proportionality as straight line on a graph, what quan- 895 Whs il p situation, impoisible? Tn an effort to boost s ke, negect g (he' :
ok ;“ should you plot on (he horizontal and vertical axes? e A jon game show, each weekly winner is e e A o bangles
(d) What CXpression represents the theoretical slope of offered 2 al $1 million bonus * b or st Jabt g el mon
; S can personally count out that exact amount from 1 supply of i label the ittus a1 o ¢
o one-dollar bills. The winner must do this task under supe s :
n by television show exccutives and within one 40-hour R
— ork week. To the dismay of the show’s producers, most con
testants succeed at the challengc CHALLENGE PROBLER
| 33. Bacteria and other aryotes are found dec S R
[ BIO] n water, and in the air. One micron (10 rvi 1 e e
| Liengtinacalenaiociatec il e above the horizontal as 6. After walk
- ite the total number of bacteria a otes on s :
| the Earth Estimate the total mass ¢ robe G Pl a e
” i 1 terms of
e 34. A spherical shell has an outside radius of 2.60 cm and an in term ’
ns BE e radius of a. The shell wall has uniform thickness and ove the g
‘ Figure P1.2g
ADDITIONAL PROBLEMS
| 22. Review T )
) HBILS, we wrig ,‘v““‘ll”” * known to three significant
i ; b 279 M = 6,38 m and 6.374 m = 6.37 m
7 g "ds in 5, we arbitrarily choose to write
N ) could equally well write 6,375 m

g down" ip, .
! Instead of rounding up,” because

- w5 TR
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X equally spaced. (John Arehart/Shutterstock.com)
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TOVLINE You are a passenger in a car being driven by a friend

: oad. You notice that the telephone poles, streetlight poles, or
©€rpoles on the side of the road are located at equal distances from
ut your smartphone and use it as a stopwatch to measure
ed for you to pass between adjacent pairs of poles.
u that the car is moving at a fixed speed, you notice that
he same. Now, the driver begins to slow down for
"‘ the time intervals and find that each one is lon-
i ;: isz:j:n?wa: from the traffic light and speeds
- v' '€ shorter. Does this behavior make
. SD;ZZS;Z;;?tpeed again, you use the time inter-
J €d Dy your friend to calculate the
xcitedly tell yo

N youririend to pull over so you can
poles. How

ysis Model
to Problem + Al gL You 3

accurate was your calculation?

our study of physics \
nvestigate motior

th the topic of kinemat
onment that ‘nﬂ:’;czotmn i
= iy asmnme’:?ﬂnéonon Motion is
C ) reece, China

Vea the motion of objects in the night
Cf”‘”g down inclined planes. Isaac

Om everyday experience, we
'S change in the obje

'S @ continugy

d 10
» make
2 numerical measurements, such as

phone s,
. 1se mostly 1o apps tha stan-

B B
The introductory storyline involves a long, straight .“\
B v road like this one, where the power poles are

position. In this chapter, we will analyze the motion of an object along a straight

line, like the car in the storyline. We will use measurements of length and time as
described in Chapter 1 to quantify the motion. An object moving vertically and sub-

ject to gravity is an important application of one-dimensional motion, and will also be

studied in this chapter. Remember our discussion of making models for physical situ-

ations in Section 1.2. In our study, we use the simplification model mentioned in that
section and called the particle model, and describe the moving object as a particle
regardless of its size. In general, a particle is a point-like object, that is, an object that
has mass but is of infinitesimal size. In Section 1.2, we discussed the fact that the
motion of the Earth around the Sun can be treated as if the Earth were a particle. We
will return to this model for the Earth when we study planetary orbits in Chapter 13
As an example on a much smaller scale, it is possible to explain the pressure exerted
by a gas on the walls of a container by treating the gas molecules as particles,
without regard for the internal structure of the molecules; we will see this analysis

in Chapter 20. For now, let us apply the particle model to a wide variety of moving
objects in this chapter. An understanding of motion will be essential throughout the
rest of this book: the motion of planets in Chapter 13 on gravity, the motion of elec-
trons in electric circuits in Chapter 26, the motion of light waves in Chapter 34 on
optics, the motion of quantum particles tunneling through barriers in Chapter 40

FX1 Position, Velocity, and Speed of a Particle

A particle’s position x is the location of the particle with respect to a chosen reference
point that we can consider to be the origin of a coordinate system. The motion of a
particle is completely known if the particle’s position in space is known at all times.
Consider a car moving back and forth along the xaxis as in Figure 2.1a (page 22).
T'he numbers under the horizontal line are position markers for the similar to
the equally spaced poles in the introductory storyline. When we begin collecting
position data, the car is 30 m to the right of the reference position x = 0. We will
use the particle model by identifying some point on the car, perhaps the front door

handle, as a particle representing the entire car.

We start our clock, and once every 10 s we note the car’s position. As you can see
from Table 2.1, the car moves to the right (which we have defined as the positive
direction) during the first 10 s of motion, from position ® to position ®. After ®,
the position values begin to decrease, suggesting the car is backing up from position
through position ®. In fact, at ©, 30 s after we start measuring, the car is at the
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than
50 m to the left of x = 0 when we stop recording information after our sixth data

point. A graphical representation of this information is presented in Figure 2.1b.
Such a plot is called a position—time graph.

Notice the alternative representations of infor mation, as discussed in Section 1.2,
that we have used for the motion of the car. Figure 2.1a is a pictorial representation,
whereas Figure 2.1b is a graphical representation. Table 2.1 is a tabular representa-
tion of the same information. The ultimate goal, as mentioned in Section 1.2, is a
mathematical representation, which can be analyzed to solve for some requested
piece of information.

In the introductory storyline, you observed the change in the position of your
» the power poles. The displacement Ax of a particle is defined as

car relative tc
As the particle moves from an initial

its change in position in some time interval.
position x, to a final position x, its displacement is given by

Ax=x—x (2.1)

< Position
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Figure 2.1 A s '

g 1 ) h along a straight line. Because we are interested only in the

. Several representations of the information
b

1 tabul
ibular representation of the information

b) A grar
A graphical representation (position-time

he capital Greek letter delta (A)

I 1
1is definition, v
n, We see

to denote the change in a quantity. From

that (
: Axis positive if x is greater than x and ne
siven the data in Table

10us time intervals,

= tive if x is
2.1, we 1 ea termi i
ve can easily determine the displacement

It is very ir
yort

L 10 recognize t

. & % ¢ difference betwee i :
ance traveled. Distance is the between displacement and dis-

ength
xample, the basketball players i} of a path followed by a particle. Consider, for
L all players in Figure 9.9 ; )
sket down the court to (1 Ifa player runs from his own team’s

1er team'’s basket

during this time

ket, the displacement of the player and then returns to his own bas-

interval is zero because he ended

frivan] ted: x ¥ i 2
I e moved through a digessor s0 Ax = 0. During this time interval,
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n what dir,
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Cha i Umoving . : S
= 0. We shaj] 1, 8 to the left undergoes a neg-
) reat v 3 §
: portan €€tor quantities in greater detail
Nt point hyag greate
tl : been mey
p SiX data 1entioned. Noy:
€ particle ijs nor . POIIS in the o oned. Notice that the data in
Ot comple 8raph in Figyre 9 »
s Pletely knoyy § igure 2.1b. Therefore
N of Ve drawp throug} ’<l( ause we don’t know its ]ymi-
on of 1} 8h th s
M ofthe car, vy, © SIX points in the graph is

only S .
have Information about six

instants of time; we have no idea what happened between the data poir

curve is a guess as to what happened, but keep in mind that

the smooth curve does represent the actual motion of the car
complete information about the entire 50-s interval during which we watch the

car move.

JUICK QUIZ 2.1 Which of the following choices best describes what can be
determined exactly from Table 2.1 and Figure 2.1 for the entire 50-s interval
ind

(a) The distance the car moved. (b) The displacement of the car. (¢ Both (a

(b). (d) Neither (a) nor (b)

It is much easier to see changes in position from the graph than from a verbal
description or even a table of numbers. For example, it is clear that the car covers
more ground during the middle of the 50-s inte rval than at the end. Between posi-
, the car changes position by almost 40 m, but during the last 10 s

tions © and
between positions ® and ®, it changes position by less than half that much. A com
mon way of comparing these different motions is to divide the displacement Ax that
occurs between two clock readings by the value of that particular time interval At
The result turns out to be a very useful ratio, one that we shall use many times. This
ratio has been given a special name: the average ve locity. The average velocity of
a particle is defined as the particle’s displacement Ax divided by the time interval

At during which that displacement occurs

Ax

. 2.2) < Averagev
g Al ( ag

where the subscript x indicates motion along the xaxis From this definition we see
that average velocity has dimensions of length divided by time (L./T), or meters per
second in SI units.

The average velocity of a particle moving in one dimension can be positive or
negative, depending on the sign of the displacement. (The time interval Atis always
positive.) If the coordinate of the particle increases in time (that is, if x x), Ax
is positive and Ax/At is positive. This case corresponds to a particle mov-
ing in the positive % direction, that is, toward larger values of x. If the coordinate

ative and hence v___ is negative. This

decreases in time (thatis, if x, < x), Axisn
case corresponds to a particle moving in the negative x direction.
-ometrically by drawing a straight line

We can interpret average veloc ity g
between any two points on the position-time graph in Figure 2.1b. This line
forms the hypotenuse of a right triangle of height Ax and base At. The slope of
this line is the ratio Ax/At, which is what we have defined as average velocity in

Equation 2.2. For example, the line between positions @® and ® in Figure 2.1b

has a slope equal to the average velocity of the car between those two times
(52 m 30 m)/(10s — 0) = 2.2m/s.

In everyc usage, the terms speed and velocity are interchangeable. In physics,
! 5 I

however. there is a clear distinction between these two quantities. ( onsider a mar

athon runner who runs a distance d of more than 40 km and yet ends up at her
Lent is zero, so her average velocity is zero! None-

starting point. Her tot 1l displacen
L

1eed to be able to quantify how fast she was running. A slightly differe:

theless, we
shes that for us. The average speed v,  of a particle, a scalar quan

ratio accomp
tal time interval

total distance d traveled divided by the tc

tity, is def as the

required to travel that distance:
1

{

& < Average
At

velocity: meters

speed is the same as the unit of average

The SI unit of aver
¢ speed has no direction and

e velocity, however, avera

per second. Unlike averag
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aber. Notice the clear distinction between
e speed: average velocity (Eq. 2.9) is
ereas average speed (I q- 2.3) is the

) elocity or average speed of a particle does not provide

5 ctails of the trip. For example, suppose it takes you 45,0 ¢

) yor & toward your departure gate at ap

) K you missed the restroom, and you retury

95.( o saime ng 10.0 s to make the return trip. The

g ¥ o s+75.0m/55.0s 1.36 m/s. The average speed

is 12 50s =22 s. You may have traveled at various \Iy(“»d\

o 1k and, of course, vou ged direction. Neither average velocity nor
erage speed | es ion about these details

er which of the following conditions is the magnitude of

@uick Quiz 2.2 |

he averag tyofa le moving in one dimension smaller than the aver-

j¢ speed over some time interval? (a) A particle moves in the +xdirection with-
eversing. (b) A particle moves in the —x direction without reversing. (c) A

ticle moves in the +xdirection and then reverses the direction of its motion.

* (d) There are no conditions for which this is true

Calculating the Average Velocity and Speed

elocity, and average speed of th I
8¢ speed ol the carin Figure 2.1a between positions @ and ®

g the and its mo W "
me Ve model the ca
Ithe caras a particle. From the position-time

att, =505

535m=-30m 83 m

egative dire
rection (to the e |
¢ left, in this case) from where it started. This

d data. A quick look at Figure 2

gnitude as the suppli
indicates

A 83 m
0s e 1.7m/s
“ he a in Table 9
ssumptior ,—,J‘}“""N we do not have information
from ® 10 @ e the details of the car's position are
197 »m (from ® to ®), fora tota
s
k "‘legm 2.1b were different so that
: £rage speed of the car would change
EZ'J Instanta

neous Velocity ang Speed

« © AL particular instant in time ¢

ne ing 1As
erval At In other we

S precisely
f Cly as you can spe v your

ific ¢]¢
lock readi

s, you

som¢

Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1 (b) An ¢ ement of the
upper-left-hand corner of the graph

specific instant. What does it mean to talk about how quickly some thing is moving
and talk only about an individual instant? If the time interval
se veloc-

if we “freeze time
has a value of zero, the displacement of the object is also zero, so the aver:
ity from Equation 2.2 would seem to be 0/0. How do we evaluate that ratio? In the
late 1600s, with the invention of calculus, scientists began to understand how to

answer that question and describe an object’s motion at any moment in time

To see how that is done, consider Figure 2.3a, which is a reproduction of the
graph in Figure 2.1b. What is the particle’s velocity at ¢ = 02 We have already dis-
cussed the average velocity for the interval during which the car moved from posi-
tion @ to position ® (given by the slope of the blue line) and for the interval dur
which it moved from ® to ® (represented by the slope of the longer blue ling
and calculated in Example 2.1). The car starts out by moving to the right, which we
defined to be the positive direction. Therefore, being positive, the value of the aver

1l

age velocity during the interval from ® to ® is more representative of the init

velocity than is the value of the average velocity during the interval from @ to €

which we determined to be negative in Example 2.1. Now let us focus on the short

blue line and imagine sliding point ® to the left along the curve, toward point @
as in Figure 2.3b. The line between the points becomes steeper and steeper, and as

the two points become extremely close together, the line becomes a tangent line to

the curve, indicated by the green line in Figure 2.3b. The slope of this tangent line

represents the velocity of the car at point @. What we have done is determine the

instantaneous velocity at that moment. In other words, the instantaneous velocity
equals the limiting value of the ratio Ax Atas Atapproaches zero:®
Ax
1 im (2.4)
M0 At
In calculus notat this limit is called the derivative of x with respect to £, writ
ten dx/dt
1 lim LA (2.5)
At d
The instantar 1s velocity can be positive, negative, or zero. When the slope
of the position-time graph is posit s at any time during the first 10 s in
Figt 2.3 i s ind the car is moving toward larger values of x. After point
[ yecause the slope is negative and the car is moving to d smaller
x. At point the slope and the instantancous velocity are zero It
car is momenta res

Slopes of Graphs

of § cal

Instantaneous Speed and Instan

taneous Velocity It

Pre
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pter 2 Motion in One Dimension

From here on, we use the word velocity to designate in~l;|nli|m-fn|\ velocity, When
shall always use the adjective average.

is defined as the magnitude of its instan-
1s speed has no direction asso-

we are interested in average velocily, we

The instantancous speed of 2 particle
taneous velocity. As with average speed, instantancot
ciated with it. For example, if one particle has an instantaneous velocity of +25 m /g

along a given line and another partic le has an instantancous velocity of =25 m /g

along the same line, both have a speed® of 25 m/s.

@UICK QUIZ 2.3 Are officers in the highway patrol more interested in (a) your

o average speed or (b) your instantaneous speed as you driv

== FT The Velocity of Different Objects

( g r . nsi i 1

v'wn\x'(hl;h( following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls back
into the o1’ 4 3 : ) ] ; :
: ‘n "ul ‘n nuulu s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts through space
at constant vel 3 e any points i i j i o
2 .“ t')ru\A Are there any points in the motion of these objects at which the instantaneous velocity has the same
alue as the average velocity over the entire motion? If so, identify the point(s). g g ¥

[l soLution

| (A) The average C Ol e thrown ball is cturns to the starting point; therefore, its displacement is
average velocity for the thrown ball i heref lispl. t
A 2 zero because the ball ret
, v 1 il nt;
¢ 1sone point at which the instantaneous velocity is zero: at the top of the mot
otion.
(B) cars average velocity cannot be ¢
setween 0 and 100 m/s. Because the ¢

uate £ g i i i
ed unambiguously with the information given, but it must hav

ar will have every instant .

. P, - antaneous vel rlweed

the interval, there must be some instant at which the inst ielocity between 0 and 100 m/
motion

some value

atsome time during

antane: velocity is e
cous velocity is equal to the average velocity over the entire

C) Be, s the 9 '
(C) Because the spacecralt’s instantaneous velocity is const.

over any time interval are the same. AT Rnhoousvelotity

At any time and its average velocity

Average and Instantaneous Velocity

A particle moves along the x ax
sion x

gt axis. Its position varies with time ac
gras e ‘. '. where :»n n meters and ¢ s in seconds.! Th
s shown in Figure 2 4a. Beca !
0 -4a. Because th i
lll.l(l!(‘").l(l( al = i s i : ; A
il ‘)f:l’“;")". the motion of the particle is known at a]| ll'c il ) e
; T, n 2 all times
Aty ’:lr}‘(lal.; is “’f" provided at six instants of time, \];(‘\.A unlike that of the
e e :, nr;( irection for the first second of motion, e Fat
S, and moves in the positi i ey
s positive xdirectio) i Ay et
N at times ¢ > | k
[

ace icle i
ment of the particle in the time intervals ¢

cordij
ng to l!\e expres- : = +4m/s
€ position-time graph

(A) Determine the displ.
t=1stot=3s

SOLUTION

From the graph in Figure 2.4
n mind that the particle doe

0t0t=1ganq

4, form a mental e,

s ot move in a curved path iy
aphical representation, The
v in Figure 2.4b, At ¢ = (
first time interva

€ particle’s moyj, Al
: motion, K o
N space such ag g}, Gy

Fcle moves pn .:l shown by (he
0,is ity along the i
i oo nn\|lng to the right o mgu tle“u
4 erefore, we know th, Sauve and he, e leftz
at the d hence the ¢
number hz v & displaceme, : € average
o VINg units of meters. Similarly 3 et between @ and ® ee ¥elacity iy b v C i
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.
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2.3 Analysis Mod e Under Const 7
2.3
|
| In the first time interval, set £ = 1, = Oand 1, = 1, s. Axy 8= %X — X =xg = X
Substitute these values into x = =4+ 2¢* and use
& R ) + 2 (
| Equation 2.1 to find the displacement: (=4() +2(1) 1(0) + 2
‘ For the sccond time interval (1= 1stot = 35), set £, = Axg 0= %— %= %y — X
ly = 1sand = =3s:
® o~ 2% 2 q)2
j / [—4(3) + 2(3)%) (1) +2(1
These displacements can also be read directly from the position—time graph
(B) Calculate the average velocity during these two time intervals,
SOLUTION
G E " B s Axy . g 2m
In the first time interval, use Equation 2.2 with At = Vi = 7 = 1 -2m/s
iy TN e s t s
L= L= lg—lg=1ls:
B Axg .o _8m
In the second time interval, At = 2 s -0 = = +4m/s
N At 2s
These values are the same as the slopes of the blue lines joining these points in Figure 2.4a.
(C) Find the instantancous velocity of the particle at { =
SOLUTION
r ) . 10m - X
Calculate the slope of the green line at £ = 2.5 s (point ©) %="33 15 = +6m/s
ey g 12 2 38s—15s
in Figure 2.4a by reading position and time values for the
ends of the green line from the graph:
Notice that this instantancous velocity is on the same order of magnitude as our previous results, that is, a few meters per
second. Is that what you would have expected?

EJ Analysis Model: Particle Under Constant Velocity

In Section 1.2 we discussed the importance of making models. As mentioned
there, a particularly important model used in the solution to physics problems is
an analysis model. An analysis model is a common situation that occurs time and
again when solving physics problems. Because it represents a common situation,
it also represents a common type of problem that we have solved before. When
you identify an analysis model in a new problem, the solution to the new problem
can be modeled after that of the previously solved problem. Analysis models help
nd guide us toward a solution to the

us to recognize those common situations
problem. The form that an analysis model takes is a description of either (1) the
behavior of some physical entity or (2) the interaction between that entity and
the environment. When you encounter a new problem, you should identify the
of the problem, ignore details that are not important, and
ady seen that might

fundamental deta
attempt to recognize which of the situations you have alre:
be used as a model for the new problem. For example, suppose an 0
moving along a straight freeway at a constant speed. Is it important that it is an
automobile? Is it important that it is a freeway? If the answers to both questions
1 a straight line at constant speed, we model the auto-
astant velocity, which we will discuss in this section.
about an automobile. It

automobile is

are no, but the car moves
mobile as a particle under cor )
Once the problem has been modeled, it is no ]“"‘U"ﬁll !
is about a particle undergoing a certain type of motion, a motion that we have

studied before.

« Analysis model
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2.3 Analysis Model: Particle U

28 Chapter 2
common practice in the legal profession
storyline that the time intervals between poles were always the same in this case
Is this result consistent with Equation 2.77 Example 2.4 below shows a numerical

application of the particle under constant velocity model.

.what similar to the
This method is somewhats! 1il

oo ;ncu'drn'\-" '; a ])[('\in\hh resolved case can h‘c found l.hul is very
similar leg |Il\~x‘u the current one, itis used as "“"lv_’ "')d_“"' '"’7“:"”“'\'” is made in
\n;lll. o I:ﬂ them logically. The finding in. the previous case ¢ 1;1 Il?( n be lAN.d_“’
sway the finding in the current case. We will do wmt‘lhmg similar in |)F1\ sics. For

y % we search for a “physics prec edent,” a model with which we are =T

slied to the current pml:]vm. |

All of the analysis models that we will develop are based on four fundamenta]
first of the four is the particle model discussed in the
article under various behaviors

of finding

“ Modeling a Runner as a Particle

a given problem,

already familiar and that can be apy
1 body. (Kinesiology is the study of the movement of the human

A kinesiologist is studying the biomechanics of the hum
body. Notice the connection to the word kinematics.) She determines the velocity of an experimental subject while he runs
along a straight line at a constant rate. The kinesiologist starts the stopwatch at the moment the runner passes a given point
and stops it after the runner has passed another point 20 m away. The time interval indicated on the stopwatch is 4.0 s

simplification models. The
introduction to this chapter. We will look at a p
ractions. Further analysis models are introduced in later

and I'Il\lr(llll“l'[]ld] nte!
1 on simplification models of a system, a rigid object, and a wave. Once

shall see that they appear again and

chapters based I y e
we have introduced these analysis models, we hat is the runner’s velocity? 2

again in different problem situations. mo L 7
When solving a problem, you should avoid browsing through the chapter looking ‘ - =
for an equation that contains the unknown variable that is requested in the problem. We model the moving runner as a particle because the size of the runner and the movement of arms and legs are
In many cases, the equation you find may have nothing to do with the problem you unnecessary details. Because the problem states that the subject runs “at a constant rate,” we can model him as a particle under
are attempting to solve. It is much better to take this first step: Identify the anal&sis || oty
model tha.u is appropriate for the problem. To do so, think carefully about what is ’ Having identified the model, we can use Equation 2.6 to ==
going on in the problem and match it to a situation you have seen before. Once the e : : i N )
analysis model is identified, there are a small number of equations from which to
(::uow that are appropriate for that model, sometimes only one equation. Therefore.
the model tells you whii i ¢ i 3 ;
o, Pglul hlt‘))‘l :quallon(s) to use for the mathematical representation.
et us use Equation 2.2 .
Wil | -“;" to build our first analysis model for solving problems.
e Imagine a particle i i v i |
- g parti le moving with a constant velocity. The model of a particle
under constant velocity can be applied in anysituation in whici i
be % : y situation in which an entity that can
be modeled as a particle is moving with constant velocity. This situati ) fi
quently, so this model is important. - S

“X% 20m-0 s
- = 20m/s

At 40s

‘ find the constant velocity of the runner:

(B) If the runner continues his motion after the stopwatch is stopped, what is his position after 10 s have passed?

SOLUTION

Use Equation 2.7 and the velocity found in part (A) to

find the position of the particle at time ¢ = 10's:

+out=0+ (5.0m/5)(10s) =

Is the result for part (A) a reasonable speed for a human? How does it compare to world-record speeds in 100-m and 200-m

sprints? Notice the value in part (B) is more than twice that of the 20-m position at which the stopwatch was stopped. Is this

If the velocity ¢ article i o
of a particle is constant, its Instantaneous velocity at any instant
value consistent with the time of 10 s being more than twice the time of 4.0 s?

during a time interval is
o ‘* Th‘« r’:‘(‘:“"' l;)llfc same as the average velocity over the interval, That s,
*~ Urag’ ‘relore, substituting v forv— in Fanation . o -
be used in the mathematical re; ?’e; Vo 1 Equation 2.2 gives us an equation to =
presentation of this situation:

The mathematical manipulations for the particle under constant velocity stem from
an be used to solve

v
T 6) s el . : Rt T .
At 2 Equation 2.6 and its descendent, Equation 2.7. These equation
for any variable in the equations that happens to be unknown if the other variables

ample 2.4, we find the position when the

Remembering that Ax =
are known. For example, in part (B) of

Figure 2.5 posic
-3 Position-time graph = X, we se =
for a paricle under constan 1™ Tovesee thaty, = (v~ x)/Al, or
elocity. The value of the # S b F 2 2 =
e value of the constant X+ v A velocity and the time are known. Similarly, if we know the velocity and the final posi-
) tion, we could use Equation 97 to find the time at which the runner is at this position.

is the slope of the line.
A particle under constant velocity moves with a constant speed along a straight
line. Now consider a particle moving with a constant speed through a distance d

Tlnu-qu at
ation tells us thag s
at the positic
on of the
a change in the direction of

inal positi ) . article i< oiv, o .

um-rl\ al A;"; At imei=0 plus the di?pl‘xccnl:""d:h o e SniEIE
L n practice, w ; ccement v Atthat occurs duri - ti

- Ve usually choose ghe e Acthaty ceurs du;_mg the um(l'

2 ¢ beginning of the interva

obet =0, s
and the tipy;
1€ at the ¢
becomes A the end of the interval to be ¢ i
= 1, s0 our equation

along a curved path. As we will see in Sec tion 2.5 belo
motion of a particle signifies a change in the velocity of a particle even though its
Position as a function of » speed is constant; there is a change in the speed vector. Therefore, our particle mov-

ing along a curved path is not represented by the particle under constant velocity

time for the parti
Rotat particle under Fratnhig
tant velocity model 7 ,
Equations 2.6 anq 9 7are th
Z e
constant velociy, Wheneye
be the :
he l?u particle under cong
Figure 2

Primary ¢,
T you hay

.5 YF
1S a graphica] re

(jqu:ul to the magn;
line, is the

The slope of the straight line ;
e

“quations used jp (he
¢ identified (e
»You cap j

] immed
(h]\pmmnn»um(' gra o e

2t (for constang v) e

model of a particle under

analysis model in a problem to

1ately turn to these equations.

article :
particle under constant velocity. On

tude of h g

e Ot Presenting the motion i

oy Equage o ;},.\h( motion is constant and
<-4, which is th

€ particle upde,

€ equation of a straight

model. However, it can be represented with the model of a particle under constant
speed. The primary equation for this model is Equation 2.3, with the average speed
Vo replaced by the constant speed v:
-4 (2.8)
At
inea |);lrliclc moving at a constant speed in a circ ular path. If
can calculate the time

v

As an example, ima
the speed is 5.00 m/s and the radius of the path is 10.0 m, we
interval required to complete one trip around the circle:

In the 5 sy a
ope: v and the .« " N
senied ts :r( ning storyline the d the \lmcm.pl o }F’(Onslam\olu(uy model. g 2(10.0 m)
3 % Particle X r reny N 2 2m(10.
1€ part of the "",“’)l "llFl( under congga, " both representations. . d At= 4. 287, —~=126s
M taking ANt velocity model was repre- Al v 1 5.00 m/s

— e g

Place ap “f;

xed speed.” v i
Speed.” You found in the




2.4 The Analysis Model Approach to Problem Solving

30 Chapter 2 Motion in One Dimension
ANALYSIS =W Particle Under Constant Velocity * Now focus on the expected result of solving the problem. Exactly what is the
question asking? Will the final result be numerical, algebraic, or verbal? Do
you know what units to expect?

Don’t forget to incorporate information from your own experiences and
common sense. What should a reasonable answer look like? For example, you
wouldn’t expect to calculate the speed of an automobile to be 5 % 10° m/s.

Imagine a moving object that can be modeled as a particle. Examples:
If it moves at a constant speed through a displacement Axina o ereoroid traveling through gravity-free space
2 car traveling at a constant speed on a straight highway

straight line in a time interval A, its constant velocity is 4
_ Ax 26) o a runner traveling at constant speed on a perfectly
A straight path
The position of the particle as a function of time is given by + an object moving at terminal speed through a viscous Categorlze
medium (Chapter 6) N Ohca o 7 . s )
%= x40 21 nce you have a good idea of what the problem is about, you need to simplify
the problem. Use a simplification model to remove the details that are not

important to the solution. For example, model a moving object as a particle.

ST
v — —_—

If appropriate, ignore air resistance or friction between a sliding object and
a surface.
Once the problem is simplified, it is important to categorize the problem in
one of two ways. Is it a simple substitution problem such that numbers can be
substituted into a simple equation or a definition? If so, the problem is likely
to be finished when this substitution is done. If not, you face what we call an
analysis problem: the situation must be analyzed more deeply to generate an

2/2 8 Particle Under Constant Speed

SIS

llf!4|g1nc a moving object that can be modeled as a particle. Examples:
If it moves at a constant speed through a distance dalong a
straight line or a curved path in a time interval Ay, its constant

appropriate equation and reach a solution.
If it is an analysis problem, it needs to be categorized further. Have you seen

this type of plioblem before? Does it fall into the growing list of types of

® aplanet traveling around a perfectly circular orbit
N e
acar traveling at a constant speed on a curved racetrack

speed is
* arunner travelin
d g at constant speed on a curved path
=5 (28)  * acharged particle moving th ph i o blems that you have solved iiously? If so, identify y analyst. del|
At g P g through a uniform magnetic problems that you have solved previously? If so, identify any analysis model(s)
teld (Chapter 28) appropriate for the problem to prepare for the Analyze step below. Being
able to classify a problem with an analysis model can make it much easier to

lay out a plan to solve it.

o,
\
\
3 8

—_—

7
Analyze
* Now you must analyze the problem and strive for a mathematical solution.
Because you have already categorized the problem and identified an analysis
{ model, it should not be too difficult to select relevant equations that apply to
| the type of situation in the problem. For example, if the problem involves a

2. i
The Analysis Model Approach to Problem Solving

W e j
Ve have just seen our first analysis mo,

: dels: i :
and the particle under constant speed ks particle under constant velodity

gchlz\an[a i motley into a general mc;:g‘dv, \;‘ha; do we do with these models?
V. In particul y A of solvin B
That is \\'lf)crc \'ouairlilf:()i:flehn"on to the “Categorize” si[;)r(i):l:;:nsdt.hdt we (kgc;-lbe
that, the probllcm is solvetil tjanalysis model to be applied ¢ :-’h iscussion bel ;)w.
learned to be associated wi(‘l’)smg the equation or equations !(l) . przfﬂ.cn? i [:i?r
plex situations anq compl that model, This is the way phy; ml P hepadlied
plicated problems, anq break lhe)r’npi:l)tsmﬂs apprg;lch ot
0 manageable pieces.

It is an ext f )
remely USCrLIl Sk"
T iy illfor you to learp, may look comp d
me easier and of secon nature as )‘;)l‘llp b R
ractice jt!

Conceptualize

* Thefi i
i ”: [rsr :{hx,ngs 10 do when approachj
‘and the situatje, ing a
; ation, :
t;:)" (for example, diagmsmmd) carefully any representatj
t 5 g s, a i o
nt) IS)]robl(m, Imagine mO‘vimehs. tables, or phoyg, r:°;‘s of the informa
Problem: the mengy) reprcsem'a?x""'“g in your mindgofp ll? “IHll accompku]l,v
4 lon, » b what happens in the

Problem are to think about and

s you s|
B your sketet nowhould almost always make a
. . N values, perhaps in a table

braic

” ;

- T Numeric,) informay;
5= 0) or o SMAEment, oo ll
e P ng for k,

Onis given in the problem.
€y phrases such as “starts

e

particle under constant velocity, Equation 2.7 is relevant.
Use algebra (and calculus, if necessary) to solve symbolically for the unknown

* caleulate the result, and round it to the proper number of significant figures.

Finalize
e Examine your numerical answer. Does it have the correct units? Does it
meet your expectations from your conceptualization of the problem? What
about the algebraic form of the result? Does it make sense? Examine the

variables in the prohl('m to see whether the answer would change in a physi-
ful way if the variables were drastically increased or decreased

cally meaning
or even became zero. Looking at limiting cases to see whether they yield
expected values is a very useful way to make sure that you are obtaining
reasonable results.

Think about how this problem compared with others you have solved. How
In what critical ways did it differ? Why was this problem

was it similar?
assigned? Can you figure
category of problem, be sure you unders
model for solving similar problems in the future.

and it so that you can use itas a

When solving complex problems, you m
lems and apply the Analysis Model Approach to each.

probably don’t need this approach.
don’t know what to do next, however,

them as a guide.

variable in terms of what is given. Finally, substitute in the appropriate numbers,

out what you have learned by doing it? Ifitis a new

ay need to identify a series of subprob-
¢ For simple problems, you
When you are trying to solve a problem and you
remember the steps in the approach and use

31




32 Chapter 2 Motion in One Dimension
will label the Conceptualize, Categorize, Analyze, and
1 worked example is identified as a subsi;.

In the rest of this book, we
will gencrall_\‘ not be Analyzeand Finalize

Finalize steps in the worked cx;nnlple&'ll. B
tution problem in the (,‘ﬂlrgl'mzlslt‘p, there
sections labeled in the solution.

To show how to apply this appmach, we

steps of the approach labeled.

Modeling a Runner as a Particle

A kinesiologist is studying the biomechanics of the human body. (Kinesiology is the study of‘thc movement of the human
body. Notice the connection to the word kinematics.) She determines the velocity of an experimental subject while he runs
along a straight line at a constant rate. The kinesiologist starts the slnpwalch at the moment the runner passes a given point
and stops it after the runner has passed another point 20 m away. The time interval indicated on the stopwatch is 4.0 s.

reproduce Example 2.4 below, with the

| [A) What is the runner’s velocity?

SOLUTION

Conceptualize We model the moving runner as a particle because the size of the runner and the movement of arms and
legs are unnecessary details,
| Categorize Because the problem states that the subject runs “at a constant rate,” we can model him as a particle under

|
constant velocity.

| am
‘\ fnlnl Having identified the model, we can use Equation 2.6 to v = E = ﬂ fmag

find the constant velocity of the runner: A & 40s - s
|

(B) If the runner continues his motio:
s n after th i is his positi

’ e stopwatch is stopped, what is his position after 10 s have passed?
[l sotution
‘ Use Equation 2.7 and the velocity found in part (A) to
‘ find the position of the particle at time t = 10 s:

X=x+ut=0+ (50m/s)(10s) = 50 m

.\ %Im Is m_r r.r\ulx for part (A) a reasonable speed for a human?
l_- -m sprints? Notice the value in part (B) is more than lwitcl:". l;‘{
at of

low does i y
€5 1t compare to world-record speeds in 100-m and

the 20-m positi A
it 4‘0P:;s|uon atwhich the stopwatch was stopped. Is

thi ; :
his value consistent with the time of 10 s being more than twice th
vice the t

Ei Acceleration

21 E;amplt 2.3, we worked wj

5 i t

(im: l;;]ngrs \\F}l'(‘_ the particle is moving, W

time, the particle is said to be accelerat, g'F b,
ing. Fo

v S. lllp‘p()S(‘ an 0!7]0(! that can
aninitial velocity i at positio,
ial v locuy v, attime ¢ iti
& Position
/

®as in Fi
b gure 2.6a. The red
i€s with time. The g red-brown curve j
:  time. verage surve in Figure >
in velocity Av,divided bvgxh:?ele'.‘"o" a, ofglhe 2-61). sho.ws how the velocity var-
’ ime inte, i urin pa}:[‘de is defined as the change
g which that chan, -urs:
ge occurs:
e = A"x Yy— v
—E '
Aag At ?
b=t (2.9)

i

nl;::lc moving along the x axis has
velocity uat time ¢,at position

Average acceleration »

f}s with velocity,
Positive and negatj
the dimensio,

when the oy

% Motiop bei

Ve Signs 1o ing: - M8 Analyzed

ns of y "‘Oci’fy artollnd.r_a,e the dirzzc'd is one
cl/T ction of ¢

/T an i
d the dlmcnsinn of i

dimensional, we can use
he acceleration. Because
me is T, acceleration has

e
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The slope of the green line is
the instantancous accele

point

2.10)

The car moves with
different velocities at

points ® and ®.

| The slope of the blue
line connecting @ and

| ® is the average
acceleration of the car

| during the time interval
At= -, (Eq.29).

x

time squared, or L/T2 The SI unit of acceleration

2). It might be easier to interpret these units if you
suppose an object has

dimensions of length divided by
is meters per second squared (m/s
think of them as meters per second per second. For example,
an acceleration of +2 m/s% You can interpret this value by forming a mental image
of the object having a velocity that is along a straight line and is increasing by 2m/s
time interval of 1 s. If the object starts from rest, you should be able
oving at a velocity of +2 m/s after 1's, at +4 m/s after 2’5, and so on.

traffic light in the opening storyline, you
d decreased. Is

during every
to picture it m

When your friend sped up from the
found that the time intervals between poles on the side of the roa
(hat result consistent with your expectations? Each new displacement between poles
is undertaken at a higher speed, so the time intervals between poles become smaller.

In some situations, the value of the average acceleration may be different over dif-
i 1 ion as

ferent time intervals. It is therefore useful to define the
the limit of the average acceleration as At approaches zero. This concept is analogous
to the definition of instantaneous velocity discussed in Section 2.2. If we imagine that
@ is brought closer and closer to point ® in Figure 2.6a and we take the limit
we obtain the instantaneous acceleration at point ®:

point
of Av/Atas Atapproaches zero,

b Ay, dv, (210)
NS T = i

instantancous acceleration equals the derivative of the velocity with
which by definition is the slope of the velocity-time graph. The
in Figure 2.6b is equal to the instantaneous acceleration at
a velocity—time graph, not a position—time graph
we see that just as the velocity of a

That is, the
respect to time,
slope of the green line
point ®. Notice that Figure 2.6b is

like Figures 2.1b, 2.3, 2.4, and 2.5. Therefore,
is the slope at a point on the particle’s x~t graph, the acceleration
at a point on the particle’s v~ graph. One can interpret
as the time rate of change of veloc-
xdirection; if a_is negative, the

moving particle
of a particle is the slope
the derivative of the velocity with respect to time
ity. If a_is positive, the acceleration is in the positive
acceleration is in the negative x direction.

Figure 2.7 illustrates how an acceleration-time graph is related to a velocity—
time graph. The acceleration at any time is the slope of the velocity-time graph at
that time. Positive values of acceleration correspond to those points in Figure 2.7a
in the positive x direction. The acceleration reaches
e of the velocity-time graph is a maximum.

where the velocity is increasing
a maximum at time fg, when the slop
The acceleration then goes to zero at time (g, when the velocity is a maximum (that

is, when the slope of the vt graph is zero). The acceleration is negative when the
velocity is decreasing in the positive x direction, and it reaches its most negative

value at time fg,.
(

Figure 2.6 (1) A car. modeled
as a particle, moving along the
xaxis from @ to ®, has velocity
v, atl= tand velocity ©
¢ = 1. (b) Velocity-time graph
(red-brown) for the particle

moving in a straight line.

< Instantaneous acceleration

The acceleration at any time
equals the slope of the line
tangent to the curve of v,
versus tat that time.

Figure 2.7 (a) The velocity-time
graph for a particle moving along
the xaxis. (b) The instantaneous

acceleration can be obtained from

the velocity-time graph.
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time graph for the carin Figure 2.1a. Suppose
P fake a velocity-time gT¢ 5 |
UICK QUIZ 2.4 Make 5 ) e is driving is 30 km/h. True or False? 2.5
the road on which a 5 :
S ; ne W > time interval 0—5( .
i speed limit at some tme within the t 0s. The acceleration atany instant is the slope of the tangent to
o the -t graph at that instant. The graph of acceleration versus
4 e direction of the velocity of an obie,
I %o 0f 1 in a straight line, the dir¢ i : I 1 Object time for this object is shown in Figure 2.8¢. The acceleration
£i0c acceleration are related as follows. When the object’s velgc. is constant and positive between 0 and 1, where the slope of
: ’ ¢ direction, the object is speeding up. On the the v~ graph is positive. It is zero between t, and g and for
eler : . X
citv and acceleration are in opposite directions > tg because the slope of the v ~t graph is zero at these times.
1 the objec » o
3 It is negative between fgz and t, because the slope of the vt

< discussion of the signs of velocity and acceleration, we cap graph is negative during this interval. Between £, and ¢, the

acceleration is positive like it is between 0 and £, but higher in

eration of an object to the total force exerted on the object. In
( ; ‘l he f 1 object is proportional t value because the slope of the v ~t graph is steeper

Joui mally establish that the force on ar | nal to

( ter mally establish that th d Proj the Notice that the sudden changes in acceleration shown in

acceleration of the object: Figure 2.8c are unphysical. Such instantancous changes can

not occur in reality

F=xa (2.11)

T'his proportionality indicates that acceleration is caused by force. Furthermore,

tion are both vectors, and the vectors are in the same direction, Figure 2.8 (Conceptual Example 2.5) (a) Position-time graph for
herefore. | an object moving along the xaxis. (b) The velocity-time graph for the
Therefore ) grap

thi n £ vel : s
us think about the signs of velocity and acceleration by imag a

: o Imagining a object is obtained by measuring the slope of the position-time graph at '®

force applied to an object and causing it to accelerate

Let us assume the velocity cach instant. (¢) The acceleration-time graph for the object is obtained
ion are in the sa 13 ponet 4
n are in the same direction. This situation corresponds to an object by measuring the slope of the velocity-time graph at each instant

ct 1 accel

and acceler

texperiences a force acting in the same direction as its velocity. In this case, the

bject sp: s | W St ose the velocit i
ceds up! Now st 1ppose the velocity and acceleration are in opposite direc-
esin some direction and experiences a force

cfore, the object slows down! It is very useful amp! Average and Instantaneous Acceleration
acceleration to the direction of a force because itis
from our everyday experience to think
eleration K. in object ntotk

tions. In this situation, the

ect mov

ng in the opposite direction. T}
» equate the direction of the
ink only tink about what effect a force will have on The velocity of a particle moving along the x axis varies according to the expression
Nk only in terms of the direction of the

Negative A

10 — 5¢%, where v_is in meters per second and ¢is in seconds The acceleration at ® is equal to

acceleration

the slope of the green tangent

JuICK Quiz 2.5

If a car Is traveling
the direction of

s i l castvard and slowing down, what s (A) Find the average acceleration in the time interval t= 0 to t = 2.0s lineat t = 25, which is —20 m/s*
€ force on the car that ¢ i ?
I that causes it to sloy 4 >
.L\V\\JI"((') neither cast & d”‘\”. (a) (.l\l“l”d

* (b)y 1
ward nor westward

OW O I 1
n, we shall use Conceptualize Think about what the particle is doing

from the mathematical representation. Is it movir

R the term acceleratio
Bdias ion. When we n #0110 mean instantaneous accelera-

€an average

acceleration

vecals dx/dt, the acceleration cap .I\;‘,‘h\l.“” always use the adjective average. at £ = 07 In which direction? Does it speed up or slow
“ERbewttenas down? Figure 2.9 is a v~ graph that was created from
: 0, a4/ a . the velocity versus time expression given in the problem
It ‘ ( ‘\) % statement. Because the slope of the entire v ~f curve is

That is, i N\ dt d* (212) negative, we expect the acceleration to be negative

e-dimensiona

i : n, the ;
erivative accele . e solution to ti oblem does not g
f the particle’s posiy celeration of a particle equals the Categorize T ution ns problem does MOt Eigure 2.9 (Example 2.6
Position Xwith respect to tim g require either of the analysis models we have devel- Ty \elocity—time gran!
e. . C e gr
oped so far, and can be solved with simple mathematics.  particle moving along the xaxis
Graphic O Therefore, we categorize the problem as a substitution  according to the expressior 50
p alReIanonShlps Between x, iy picblc it e . _‘ !
g
M
alor x
S VS Varies 1 . »
ect 1t time %5 1n Figure 9 g ’ Find the velocities at ¢ Oand ¢ 2.0's by v 10 n 10 — 5(0) +40 m/s
2 4. Gra he
ph the velocity versus time and the substituting these values of ¢into the expression for = DB -
i i1 (2.0) 20m/s
the velocity
»
ot to )0 m/s — 40 m/s
‘ the slope of »n 2.9 to find the average acceleration '
2 instany po,. - ¢8raph : 3 20s s
ANt Between, , ,v| 15210, 50 the velocity is zero at that in the specified time interval At = (g — ¢ 20s
Cretore 1 gk J‘ the slope
rore the velogy 2 ¢ Slope of the x-f graph and s,
M S inter ire negy
s erval, In the i *’”'“ and decrease uniformly |
graph is Merval
b i CGative, ang -, D '© lp the slope of the - ‘
e nd at ¢ 1 I
£ sat € of the 1Lgoes to zero. Finally, after The negative sign is consistent with our the average acceleration ented by the slope of the blue 1
S { 18 zero, meaning that the object 1 and final points on the ve ¢ graph, is negativ
! gth j ) I I
/muu/

- ’rq h08%




B

1

0-5 40 — 512 — 10t At — 5(A0)?
at s
e+ 4

he nterval A 8o, =y,= v, = ~100A1= 5(A1)

de this

f the result 3 = lim(=10t =5 A0 = —=10¢
(=10)(2.0) m/s ~20 m/s*

le is positive and the acceleration is negative at this instant, the particle is slowing down

and (B) are different. The aver
I and @
Notice also that the

ge acceleration in part (A) is the slope of the
The instantaneous acceleration in part (B) is the slope of the
10n 1s not constant in this example.

green line
Situations involving constant

So far

e evaluated the derivatives of
function and then taking the limit
h calculus, |
vith calculus, you should recognize that there
These rules, which are listed

charelisted in Appendix B.6, ¢
¢, one rule tells us that t}

a function by starting with the defini-
of a specific ratio. If you are familiar
are specific rules for taking derivatives.
nable us to evaluate derivative s quickly.
B gt “vi‘(h-n\.\(l\r of any constant is zero. As another

na me power of ¢such ;

x= At

n of the

For instanc
example

15 in the expression

where A and » are con

ants. (This ex

The derivatiy
derivative of xwith respect 1o ¢

ore ;
pression is a very common functional form.)

tis
dx
= nAgr1
. dt
PPlying these rules o
I 1l Xample 2.6, iy
acceleration is ¢ = g _‘,i ]ll/. SWiig = 40 5¢, we quickly find that

as we founc
1in part ( le.

B) of the examy

Motion Diagrams

concepts of velocity it acce]
N fact they ar eleratio;
Sk s t ‘”‘[y”(“‘ 'l”‘”‘"':: \” illlxlhl.:l,[,r” confused with each other, but
1 to describe " (' "(]”_”‘“'”"wu]'.,g "l,:]‘\.‘d mental representation of a
A motion diagram cyp ¢ -ACeleration '.\h.]‘.l "oton diagram is sometimes use-
: ot, wl o €an be formeq 2 © an object is in motion
€ ‘,‘, shows ¢ eral ima \“;H)\m‘,’ a um//mm/m P'l“l“: )h of a
S M‘ , te. Figure 21a i B .[> e u]>|n( taken as the strobe light
! ‘ \' FSCNIS threg u[\.,,wll:”.: :ll'l:l'lln for the car studied in
¢ 14 sing]e ‘i”“‘w;” "“‘ obe¢ i’h““’"{hl])h\(” cars moving
‘ r:‘ . “ © Are equa] 11:”‘]A|]:1‘1[ toright. The time intervals
nk lities, we red 4 Part of the diagram. So as
je :’“\u:n\\w,« ’|“m\ for velocity and purple
ges of gy o CTIDe "H'mv‘un.\ 'OWn at several instants dur-
S equally “,”(".”“‘(.“ in each diagram.
: 1IN each (jme ; "¢¢d, showing us that the car
: tant 4 "Nterval, This equal spacing is

e vel
velocity
"y and zero gecel . We

I'his car moves at
constant velocity (zero

acceleration)

This car has a constant
acceleration in the

direction of its velocity

This car has a = e ST i

constant acceleration P = o

in the direct s e | O e
ection

opposite its velocity a - - S -

could model the car as a particle and describe it with the particle under constant
velocity model. The red velocity arrows are all of equal length, and there is no pur-
ple acceleration arrow shown because it is of length zero.

In Figure 2.10b, the images become farther apart as time progresses. In this
case, the red velocity arrows increase in length with time because the car's displace-
ment between adjacent positions increases in time. These features suggest the car is
moving with a positive velocity and a positive acceleration. The velocity and acceleration
are in the same direction. In terms of our carlier force discussion, imagine a force
pulling on the car in the same direction it is moving: it speeds up.

In Figure 2.10c, we can tell that the car slows as it moves to the right because
its displacement between adjacent imag

es decreases with time. This case suggests
the car moves to the right with a negative acceleration. The lengths of the veloc-
ity arrows decrease in time and eventually reach zero. From this diagram, we see

that the acceleration and velocity arrows are nof in the same direction. The car is

moving with a positive velocity, but with a negative acceleration. (This type of motion
is exhibited by a car that skids to a stop after its brakes are applied.) The velocity
and acceleration are in opposite directions. In terms of our earlier force discus-
sion, imagine a force pulling on the car opposite to the direction it is moving: it
slows down

Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same

ler

gth. Therefore, these diagrams represent motion of a particle under constant accel

eration. This important analysis model will be discussed in the next section

@UlCK QUIZ 2.6 Which one of the following statements is true? (a) If a «

is traveling

wstward, its acceleration must be eastward. (b) If a car is slowir

down, its acceleration must be negative. (¢) A particle with constant acceleration

® can never stop and stay stopped.

Ei Analysis Model: Particle
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and dif

ficult to analyze. A v

common and simple type of one-dimensional motion

however, is that in which the acceleration is constant. In such a case, the av
acceleration over any time interval is nume ly equal to the instantaneous
acceleration «_at any instant within the interval, and the velocity changes at the

same rate throu sut the motion. This situation occurs often enough that we iden

tify it as an analysis model: the particle under constant acceleration. In the dis

cussion that follows, we generate several tions that describe the motion of a

particle for this model
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icle under
celeration ¢, moving
Rx1s (a) the

Position as a function of »

velocity and time for the

particle under constant
acceleration model

s a function of »
the particle ynder
eleration model

99and take , =0 and ¢ to be any later time

If we replace @ ., by a_in Equation

t, we find that

or

u_+at (forconstant a) (2.13)

to determine an object’s velocity at any time

This powerful expression enables us
ant) acceleration a. A
x

£ if we know the object’s initial velocity v, and its (cor
velocity-time graph for this constant-acceleration motion is shown in Figure 2.11b,
The graph is a straight line, the slope of which is the acceleration a; the (con-
stant) slope is consistent with a_= dv /dt being a constant. Notice that the slope is
positive, which indicates a positive acceleration. If the acceleration were negative,
the slope of the line in Figure 2.11b would be negative. When the acceleration is
constant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having
a slope of zero.

Because velocity at constant accel

ation varies linearly in time according to
F.qu..llu)n 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity v_and the final velocity v_:

x (™

v

3

(for constant a) (2.14)

Notice that this expression for
the acceleration is constant.
We can now s i
4 use Equations 2.1, 9.9 g
Wiy i juations 2.1, 2.2, and 2.14 to obtain the positi fz j
a on of time. Recalling th, e

K53 at Axin E ion 9 S
nizing that A¢ xin Equation 2.2 represents x, — x. and recog-

average velocity ; ie y in si i i i
ge velocity applies only in situations in which

=4=6=1t=0=t wefind that

=yp ~R |
Veag £ = 3(v, + v )t

x=x+y
7= %+5(, + vt (for constant a) (2.15)

This equation provides the

initial final position of the

and final velocitjes
We can obtain
constant acceler:

particle at time £ in terms of the

another usefy] e

Xpressior
ation by substityjp, 1 for the

POsiti articla o)
% Equation 9 Position of a particle under

3into Equation 2.15:

+1
%italo, + (v, + ap)

Xtue+

(for const
ant
This equation a) (2.16)

Drovide:
Initial I les the

Position, the jpjy;
The Position

fina]

Positio,
al velocity N of the

~time graph for [;];‘Jllliv(l)(h\.
4f]|ljl::;lll: &.’“l”(:“\m Tposi'i"(') acceleration shown
n‘\(.'d‘( ';l:"(') [flﬂl the curve is a pa rab-
at any Jager time ;;]unls the initial velocity

quals the velocity v, at

particle i i
const Particle at time ¢ i, terms of the
ANt acceleration

in Figure 9

ola. The

10 this ¢

tangent Jine
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Finally, we can obtain an expression for the final velocity that does not contain
time as a variable by substituting the value of ¢from Equation 2.13 into Equation 2.15:
,~ v v 2 V. 2
1 Vi \f i
x,=x+t+5v.+tov)l —m)=x+—"
A SR a § 2a
\

Up =t 2a(x,— x) (for constant a,) (2.17)
This equation provides the final velocity in terms of the initial velocity, the constant
acceleration, and the position of the particle.

For motion at zero acceleration, we see from Equations 2.13 and 2.16 that

T %W TN hena, =0

x=x+ut g
That is, when the acceleration of a particle is zero, its velocity is constant and its
position changes linearly with time. In terms of models, when the acceleration of a
particle is zero, the particle under constant acceleration model reduces to the par-
ticle under constant velocity model (Section 2.3).

Equations 2.13 through 2.17 are kinematic equations that may be used to solve
any problem involving a particle under constant acceleration in one dimension.
These equations are listed together below for convenience. The choice of which
equation you use in a given situation depends on what you know beforehand. Some-
times it is necessary to use two of these equations to solve for two unknowns. You
should recognize that the quantities that vary during the motion are position x,

velocity v, , and time £.

You will gain a great deal of experience in the use of these equations by solving
a number of exercises and problems. Many times you will discover that more than
one method can be used to obtain a solution. Remember that these equations of
kinematics cannot be used in a situation in which the acceleration varies with time.
They can be used only when the acceleration is constant.

(UICK QUIZ 2.7 In Figure 2.12, match each v ~t graph on the top with the
¢ a~tgraph on the bottom that best describes the motion.

< Velocity as a function of
position for the particle under
constant acceleration model

Figure 212 (Quick Quiz2.7)
Parts (a), (b), and (c) are ¢
graphs of objects in onc
dimensional motion. The possible
accelerations of each object as

a function of time are shown in

scrambled order in (d), (e), and (f)

Imagine a moving object that can be modeled as a particle. If it begins from position x, and initial velocity v_ and moves in a
straight line with a constant acceleration a,, its subsequent position and velocity are described by the following kinematic equations:

=y, +al (213)

(214)  Examples

.
X; (215) freeway
.
X (2.16) (Section 2.8)
: .
.

) 2=y 2+ 2a(x— %) (217

a charged particle in a uniform clectric field (Chapter 22)

V. i S S
° 9 2 > °
G — — — — —
a car accelerating at a constant rate along a straight
a dropped object in the absence of air resistance

an object on which a constant net force acts (Chapter 5)




—

40 Chapter 2 Motion in One Dimension

Carrier Landing

Ajetlands on an aircraft carrier ata speed of 140 mi/h (= 63m/5)-

0 s due toan arresting cable that snags the jet and

(A) What is its acceleration (assumed constant) ifit stops in 2.

‘ astop?

Conceptualize You might have scen
! surprisingly fast by an arresting cable. A caref
| of 63 m/s, we also know that the final speed is z
have no information about the change in position of t

ful reading of the problem reve:
ero. We define our xaxis as
he jet while it s slowing down.

Categorize Because the acceleration of the jetis assumed constant,

| vy~ U 0-63m/s

( Analyze Equation 2.13 is the only equation in the particle B =50
under constant acceleration model that does not involve 208

[ position, so we usc it to find the acceleration of the jet,

‘ modeled as a particle:

(B) If the jet touches down at position x, = 0, what is its final position?

[l SOLUTION
| Use Equation 2.15 to solve for the final position:

5+ Yo, + 0 )t=0+ 463 m/s +0)2.05) = 63m

Finalize Given the size of aire riers, 3 S T 2 e for sto) 3 I ea of usi

| ize of aircraft carriers, a length of 6 v

5 ; g ) 3 m seems reasonable f i j i

S5 ! or stopping the jet. The idea S
(‘.\hln 0 slow d:m. n landing aircraft and enable them to land safely on ships originated at about the time of Worlc
cables are still a vital part of the operation of modern aircraft c.'lrrién

|
| ELERMEEN Suppose j cr with a speed faster than 63 m
b ppl) the J('l Iilndi on lh(‘ dl'l'k ()f ll‘(‘ 'Iir( i
E aircraft cai i pe but h
| acceleration due to the cable as that calculated in part (A). How will lhr.:ll crh;\:::el; ; o o
e answer to part (B)?

we model it as a particle under constant acceleration.

brings it to

movies or television shows in which a jet lands on an aircraft carrier and is brought to rest
als that in addition to being given the initial speed
the direction of motion of the jet. Notice that we

ng arresting
1 War L. The

as the same

| Answer If the jet is travel i i
i veling faster at the beginning, it will stop farther away from its starting poi h
S oint, so the answer to part (B)

will be larger.

|

Watch Out for the Speed Limit!

You are driving at a constan
tspeed of 45.0 m/s wh

: 5 en you pass ==

alrmpﬂln m«: amotorcycle hidden behind a billboard, o-y:us« ; S LTS =D
[ billboard mlc:“h b b::lboa'd' the trooper sets out from(:'i:c ® ®

chyou, acceleratingata co
How long does it take the trooper to mﬂ':!:g";;l:‘ c«:‘f g.wm/s!.
re

Conceptualize 1
“,,,1,‘:,.,;. ::.,ml:m example represents a class of
realin ms. These problems involve re.
st Bt encounter in one’s daily life.
it :xh ln, opposed to an unspecifi
[ aracter in the problem, y
een physics and everyday life!

| . 915
Sx larg =15 tha arger, t
huld be larger. Mathematically, we see in E
hould b Math quation 2.15 thatif v_is .
. s then x
/

|

problems calleq
4 al-world situations
T !1(-\(- problems also
ied particle or object. With
ou can make the connection

Figure 213 (5,

Passes a hidden trooper,

| Categorize
A pictorial repr,
constant velocity, and the ui,c,:"""“'n (Fig- 2.13) helps clarify ¢
| T1s modeled a5 5 ¥ the se,
Particle undey quence of ey
OnStant aceelpryy;
s - i eratio;

Position of each v, — n.
= 0as the time

nai 113 we write expressions for
Analyze Firy, i Pressions for the

of the billboard as the origin and ¢ <hicl .
0 set ic ——
‘s i l:(lﬁarunﬂiun of time ll'A
00, p 3
Per beging Moving ’\lls

C eni N :
onvenient to choose tl

ample ¢ 3 y
Ple 2.8) You are in a speeding car that

ents. Yoy .
- r
caris modeled as a particle under

he position

that ingt;
tinstant, your car has already

continued

2.8 Freely Falling Objects M

2.8 continued
traveled a distance of 45.0 m from the billboard because it has t
the initial position of your car is xg = 45.0 m.

raveled at a constant speed of v, = 45.0 m/s for 1 s. Therefore,

Xar = % ¥ V!

‘e car

Using the particle under constant velocity model, apply
Equation 2.7 to give your car’s position at any time f:

A quick check shows that at ¢ = 0, this expression gives your car’s correct initial position when the trooper begins o
move: X, = Xg = 45.0m.
¢ = L. g2
X=X + v t+sal

=0+ (0)t+ ja

ja

The trooper starts from rest at tg = 0 and accelerates at
a, = 3.00 m/s* away from the origin. Use Equation 2.16 x
to give her position at any time £ S

Xurooper — Xear

Set the positions of your car and the trooper equal to
la2=
20,6 =3p * Vol

represent the trooper overtaking your car at position ©:

lip= s =
jalf—v - x=0

vtV +2axg

Rearrange to give a quadratic equation:

Solve the quadratic equation for the time at which the B —

. o . a
trooper catches your car (for help in solving quadratic X
equations, see Appendix B.2):

Evaluate the solution, choosing the positive root because

that is the only choice consistent with a time £ > 0:
Finalize Why didn't we choose ¢ = 0 as the time at which your car passes the trooper? If we did so, we would not be able to use
for the first second and then

the particle under constant acceleration model for the trooper. Her acceleration would be zero
3,00 m/s” for the remaining time. By defining the time ¢ = 0 as when the trooper begins moving, we can usc¢ the particle under
constant acceleration model for her movement for all positive times.

WS EIEH What if the trooper had a more powerful motorcycle with a larg

time at which the trooper catches your car?

Answer If the motorcycle has a larger acceleration, the trooper should catch up to your car sooner, so the answer for the time
should be less than 31 s. Because all terms on the right side of Equation (1) have the acceleration a, in the denominator, we see
symbolically that increasing the acceleration will decrease the time at which the trooper catches your car.

er acceleration? How would that change the

EX] Freely Falling Objects

in the absence of air resistance, all objects dropped near the

Earth’s surface fall toward the Earth with the same constant acceleration under the
influence of the Earth’s gravity, regardless of their mass. It was not until about 1600
that this conclusion was accepted. Before that time, the teachings of the Greek philoso-
pher Aristotle (384-322 BC) had held that heavier objects fall faster than lighter ones.

The Ttalian Galileo Galilei (1564-1642) originated our present-day ideas con-
cerning falling objects. There is a legend that he demonstrated the behavior of fall-
ing objects by observing that two different weights dropped simultancously from
the Leaning Tower of Pisa hit the ground at approximately the same time. Although

there is some doubt that he carried out this p:\rlimlar experiment, it is well estab-
ts on objects moving on inclined

lished that Galileo performed many experimen

planes. In his experiments, he rolled balls down a slight incline and measured the
distances they covered in successive time intervals. The purpose of the incline was
to reduce the acceleration, which made it possible for him to make accurate mea-
surements of the time intervals. By gradually increasing the slope of the incline,

It is well known that,

Georgios Kollidas/Shutterstock com

Galileo Galilei

Italian physicist and astronomer
(1564-1642)

Galileo formulated the laws that govern
the motion of objects in free fall and
made many other significant discover-
ies in physics and astronomy. Galileo
publicly defended Nicolaus Copernicus’s
assertion that the Sun is at the center of
the Universe (the heliocentric system)
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PITFALL PREVENTION 2.6

gandg Bes » confuse the
italic s ol g for free-fall accel
he nonitalic symbol

1sed as tk breviation for the

F LL PREVENTION 2.7
The Sign of g Ke

n mind that

gisa amber, It is tempting

to substitute —9.80 m/s* for g,

but resist the temptation. Down-
d gravitational acceleration is

indicated explicitly by stating the

acceleration as a = —g

PITFALL PREVENTION 2.8
Accglar-linn atthe Top of the
Motion A common misconception

is that the acceleration of a pro-
jectile

he top of its trajectory
s zero. Although the velocity at
the 1

p of the motion of an object
thrown upy

ard momentarily goes

10 zero,

th ? U
¢ acceleration is still that

yat this point. If the
and acceleration were

&
zeto, the projectile would

stay at the top,

A skyd

VEr jumps out of
same vertical line, |

speeds stay t}

a hovering
B1ore air resistance
'€ same throughou the f

conclusions about fre¢ alling O
a ball moving down avet ll(;‘l.l incline.

You might want to (ry the following ox]?&:umﬂ}l, \x:;mlln::t(:l(u\lr\l dl]“.p a coin
and a piﬂ:» of paper from the same h(-xgln. The ‘unln .\\‘x 1I \I\I.w U ‘)”I t 1.( gl(illll(l
faster. Now, crumple the paper into tight ball and <I(‘|)( a e B I € iment. Sings
vou've minimized the effects of air resistance, ll.“' com d”d‘l 1€ I'J-ll)(l will lh;“-(. the
same motion and will hit the floor at the same time. In the l(lL‘lIll/(.‘(l case, in which
air resistance is absent, such motion is referred to as /n'.r-/ull 'I!l()ll()lli If this same
experiment could be conducted in a vacuum, in which air l'\‘\l\'liln(’(‘ is truly negli-
gible, the paper and the coin would fall with the same acceleration even when the
1971, astronaut David Scott conducted such a

he was finally able to draw
falling ball is equivalent to

paper is not crumpled. On August 2,
demonstration on the Moon. He simultaneously released a hammer and a feather,
and the two objects fell together to the lunar surface. This simple demonstration
surely would have pleased Galileo!

When we use the expression freely falling object, we do not necessarily refer to an
object dropped from rest. A freely falling object is any object moving freely under
the influence of gravity alone, regardless of its initial motion. Objects thrown
upward or downward and those released from rest are all falling freely once they
are released. Any freely falling object experiences an acceleration directed down-
ward, regardless of its initial motion.

We shall denote the magnitude of the Jree-fall acceleration, also called the accelera-
tion due to gravity, by the symbol g The value of gdecreases with increasing altitude
above the Earth’s surface. Furthermor e;

: 4 slight variations in g occur with ¢ s
in latitude. At the 8 Ewith changes

Rl g ot L I:) "1‘ u: or gwhen performing calculations. For

) If we neglect air resistance and assume
?\Ilh altitude over short vertical dist
ing vertically is equivale
one dimension. There!

the free-fall acceleration does not vary
it ances, the motion of a freely falling object mov-
Sl 1€ motion of a particle under constant accele
under constant acceleration m(u:lq]u‘"m;“ developed in Section 2.7 for the particle
%) L el can be applied. The L .
falling objects Pplicd. The only 1 freely
2 that we nee, : v modification for freel
is in the vertical direc i‘i:x(nd(ll(; "“k;l in these equations is to note that the mutiorz
4 e y direction) rs S .
tion (x) and that (} ; " rather than in the hori ir
4 at the acceleration i an in the horizontal direc-
L2 @ is downward ; P 2
Therefore, we choose ¢ = - i ,'_,'d .;nd has a magnitude of 9.80 m/s*.
9.80 m/s, where the negssio. o
ere the negative sign means that

alling object i
R ject is downwa >y P
auons in gwith altitude. e Chapter 13, we shall study

@uick QuIz 2.8 Conside;

(¢) increases

ation in

p Areal 1 !
the acceleration of 3 freely f;
how to deal with vari

t the followj
ving

; and then decre L’

the same. From these

® (i) the speed of a ha])

choicass: a1
e .'IOIL(S. (@) increases, (b) decreases,
e Whu“Ah“;‘vms;md then increases, (¢) remains
o “thappens to (i) the acceleration and
WN upward into the air.
air,

The Daring Skydivers

helicopte,
pulr, A few seconds later, anoyp,
50 th Kydi {52
. at both skydivers fall with ¢} o
© Does the verticy) distance p, 52
513 E De

F‘\dncrjumps out
L Same acceleratjon
en them Stay the sa

»and they both fall along the
- Does the difference in their
me throughout the fall?

5T nt, the 1
b speeds of the skyq
ause one | skydivers are
a head stary I are differe,
w b > nany time S S0t e fi
b towever, the two skydiyer in 'Merval At afyer ond b fine i’lmpu. aly
¥ the e ar ¢ b YETs increase (he Ond. There always has ;
tic unt because they haye the their speeds i herefore, in a given g A greater speed than the sec-
tore, the diffe 3 Same o] TS 2 gre. : 2 e i 3
same thro flerence in thejy speed € accelery. separ 8reater disiapee tme interval, the first skydiver

t the fal
fall

than the

s remain ation
s the distance between th
e

second. Consequently, the
m Il]ll‘(‘il“‘\

Jy falling objects because a freely

2.8 Freely Falling Objects

Not a Bad Throw for a Rookie! ®

A stone thrown from the top of a building is given an initial velocity -

of 20.0 m/s straight upward. The stone is launched 50.0 m above the

ground, and the stone just misses the edge of the roof on its way down

as shown in Figure 2.14.

=0

0

20.0 m/s

~9.80 m/s*
i

(A) Using t; = 0 as the time the stone leaves the thrower's hand ®
at position @, determine the time at which the stone reaches its max- 28
: U%e®
imum height. ip=

Figure 214 (Example 2.10) Position,
velocity, and acceleration values at
various times for a freely falling stone

Conceptualize You most likely
have experience with dropping
objects or throwing them upward
and watching them fall, so this thrown initially upward with a velocity
3 = ) =2 . itie:
problem should describe a familiar Uy 20.0 m/s. Many of the quantities
experience. To simulate this situa- in the labels for points in the motion
% - Iobicet Vand of the stone are calculated in the
0SS a small obje: 1pward and . :
tion, o533 Sma” uject upwarc example. Can you verify the other
notice the time interval required
for it to fall to the floor. Now imag- 50.0m
ine throwing that object upward = I e
e ]
from the roof of a building. H
1
|

ues that are not?

Categorize Because the stone is in free fall, itis modeled as a particle under
constant acceleration due to gravity.

Analyze Recognize that the initial velocity is positive because the
stone is launched upward. The velocity will change sign after the stone
reaches its highest point, but the acceleration of the stone will always be
downward so that it will always have a negative value. Choose an initial | @
point just after the stone leaves the person’s hand and a final point at 8 2 ® yeo

the top of its flight.

Use Equation 2.13 to calculate the time at which the u=v,+at —>t=— =
stone reaches its maximum height:

0-20.0m/s
o= 3
® -9.80 m/s?

2.04s

Substitute numerical values, recognizing that v= 0 at point ®:

(B) Find the maximum height of the stone.

As in part (A), choose the initial and final points at the beginning and the end of the upward flight
¢ & ¢ 1, 0
Set y, = 0 and substitute the time from part (A) Yok = Jo = Yo + Vgt + 30l

into Equation 2.16 to find the maximum height:

g = 0 + (20.0 m/s)(2.04 5)

(C) Determine the velocity of the stone when it returns to the height from which it was thrown.

43

1085
0

20.0 m/s
~9.80 m/s*

500s
225m
200 m/s

~9.80 m/s*

=583s

Choose the initial point where the stone is launched and the final point when it passes this position coming down

Substitute known values into Equation 2.17: Ve = Vg 20 (g ~ V)

v = (20.0 m/s)* + 2(—9.80 m/s*)(0 — 0)

Ve -20.0 m/s

50.0 m
37.1m/s
980 m/s*

9.80 m/s%)(2.045)* = 204 m

100 m*/s*

continued




2.10
o Legative root. We choose the negative root becaus we
\ hoose either a positive or a negat
. ; : new tarrives back atits original heigh s
vnward at point ©. The velocity of the stone y qual
I direction
1 s opposite in dirc
D id position of the stone at ¢ = 5,00 s.
( t ter the throw and the final point 5.00 s later
) /s 0§ 5.0( <
( ocity at ® from Equation 2.1 1 ; 09m 50 m/5°)(5.00 5) 29.0m/s
L 1€ find the position of Yo + Upt+ saf
)0 s 0+ (20.0 m/5)(5.00 5) + 5(—9.80 m/s2)(5.00 s)?
Finalize 7 of the time defined as ¢ = 0 s arbitrary and up to you to select as the problem solver. As an example of
$s, choose 1= 0 as the time at which the stone is at the highest point in its motion I]wnwl\(-]\.nu (C) and (D)
g this newi thinstant and notice that your answers are the same as those above
What if the throw were from 30.0 m above the ground ir stead of 50.0 m? Which answers in parts (A) to (D)
Answv N f the answers wo \ng ' k 5 I
nswer e answers would change. All the motion takes place in the air during the first 5.00 s (Notice that even for
f 0.0 he stol s above 1} 0 5 s o 3 i
ton ] ibov 1 und at ¢ 00's.) Therefore, the height from which the stone is thrown is not
if we look back over our calc ons, - o
€ k back over our calculation we see that we never entered the height from which the stone
¢ n

Kinematic Equations Derived from Calculus
The velocity of a particle

moving in a straight line
iuve of the position

with respect to time.
its velocity is known
to perform t}

an be determined as the deriv-
Itis also possible
as a function of
Is task is referred to either as

Previous Experience with

' article if
Integration I Al

> to find the position of a
tme. In calculus, the procedure used

ntegra

kg : noras finding the antiderivative.
OS ne o B 4 T 3 i ‘ :
Wiz sl ‘ grap I’lﬂ a particle moving along the x axis is as shown in
=-19. Let us divide th ime t
duration At . From ) (l " € ime interval ¢ — ¢ jngo many small intervals, each of
luration As 'm the definition
. ’ |Ix]4[r of average velocity, we see that the displacement
[ Surng any small interyq) < in F D
given by Ax At, wh Al, such as the one shaded in Figure 2.15, is
wvhere ity i i
fore, the displacement during (} "V.h\ average velocity in that interval. There-
rectangle 15 |H|,m "’1\ small interval i simply the area of the shaded
g € 2.15. The tota] g; .
the 15 of & Al displacemen, for the interval ¢ ¢ is the sum of
f ulu.h\xxllum'zu’ ‘
A=V,
- \Al
vhere the symbol 3
mbol X (uppercase Greeg
£ I 3] SIgMa) sionif; I
values of n. Now, as (] € interva) 5Ma) signifies 3 Sumover all terms, that is, over
s THVals are made g
the sum increases ang the sum Apf I € smaller anq smaller, the number of terms
the velc I o - chesa value e .
¥=time graph. Therefoy, i ue equal to the area under the curve
I nn - i i
) W= orAr — () the displacement is
*= lim §
dm 3o A (2.18)
The limit of ¢
" OFthe sum showp i, §
t dis Ce t ro ation 2 i
: : of the 17440n 2,18 is call

Particle ¢, 1 ed a definite integral and so
N De written »¢ ‘

Ax (0 at

(219

2.9 Kinematic

I'he

arca of the shaded rect

15 equal to the displacement in
the time interval A

where v (¢) denotes the velocity at

any time ¢ If the explicit functional form of v (¢
is known and the limits are given,

the integral can be evaluated.

Kinematic Equations

We now use the defining equations

for acceleration and velocity to derive two of
our kinema

C equations, Equations 2.13 and 2.16.
The defining equation for acceleration (Eq. 2.10),

dt

may be written as dv_= a_dt or, in terms of an integral (or antiderivative), as

v v a_dt

For the special case in which the acceleration is constant, a_can be removed from
the integral to give

a ‘ dt=a(t—0)=at (2.20)

which is Equation 2.13 in the particle under constant acceleration model.

Now let us consider the defining equation for velocity (Eq

v_dtor in integral form as
We can write this equation as dx = v_dtor in integral f
id
2 = | v dt

Becausc

1 (, this expression becomes

( 2 1) dt ‘ dtt+a |t

1t acceleration model

) under const:
which is I on 2.16 in the particle

Figure 2.15 \
f ¥ le

Integration is an Area If

45




» Definitions

When a particle moves along the x
axis from some initial position x, to
ts displace-

some final position x

ment is

Ax=x — x 2.1)

The instantaneous speed of a particle

The average velocity of a particle
durir

velocity
g some time interval is the dis-

ement Ax divided by the time

ring which that dis-

occurs

Ax
v {
A 2.2)

The average spe
equal to the

d of a particle is

ratio of the total dis
tance it travels to the total time
interval during which it travels that
distance

Vot AT (2.3

> Concepts and Principles

When an ok

s velocity and acceleration

e drectiog: thes are in the

bie .
: ject is speeding up. On the other
e object’s velocity and
pposite directions,

hand, wher

celeration are in
the object is slowing down
g that F, = a_isa useful

I the acceleration by

Remem-
way to identify the direction
associating it with

a force.

ited problems are best approached

ganized manner Recall

els are
22, Calegorize, Analyze ;

the Analysis Model
m Solving when you

Appr.

or
steps of

oach to Proble, the analysi

Summarized bejoy

> Analysis Models for Problem Solving

Particle Un,

der Constant Velocit:

e with 2
ith a const

y. If

ant speed

a particle moves i 5
g its constant velociyy i

Ax
At (2.6)

and its pe
its p

10n is given by

(27)

—_— ® >

The instantaneous velocity of
approaches zero. By definition,
the time rate of change of the position:

An important
a Situations that we |,
1€ Or more equations

s model th
€quations 1o yge

a particle is defined as the limit of the ratio Ax/A¢ a4 At
this limit equals the derivative of x with respect to ¢, or

Ax  dx

v = lim =% (2.5)

is equal to the magnitude of its instantaneoys

The average acceleration of a particle is defined as the ratio of the change in its velocity
divided by the time interval At during which that change occurs:

Au, 3,
At

(2.9

The instantaneous acceleration is equal to the limit of the ratio Av_ /At as A approaches
0. By definition, this limit equals the derivative of o ;
change of the velocity 3

with respect to ¢, or the time rate of

Av, dy,

1
L Vo (210

1‘:1‘4 :f\";‘;:f;"]';“t freelyin the presence of the Earth's gravity experi-
If air ,L.\I\L;‘m:‘I“‘;I,‘('":']“"’Ill‘ ‘I!”'um' toward the center of the Earth.
of the Farth, and if :},;p(:.;,f."ﬂ;h(. m“[",m occurs near the surface
the Earth's radius. the “«. -:‘]U the motion is small compared with
the range ee-fall acceleration a = —gis constant over

is equal 10 9.80 1 /s2.

of motion, where I4

aid to proble
m solving is ¢k
g ¢ use of anal

model
seel - n :
"IN previous problems, Each
Aassociated with j, Whe
4t corresponds to the
The first three

Analysis mod-
analysis model has
1 solving a new problem, identify
ey 1’:.'.:](’:.:"' The model will tell you which

Introduced in this ch pter are

ave

an,

Particle
e (I[e Under Constang Speed. [f
Acurved or gy ;

ant spee,
"Uspeed is given by

G along . a particle moves a dis-
s coy aight p
nst Ught path with a constant speed,

(2.8)

ol

Particle Under Constant Acceleration. If a particle moves in
a straight line with a constant acceleration a , its motion is
described by the kinematic equations:

v,= v, +at (2.13)
Uy + v,
Vg = —5 (2.14)

Think-Pai

See the Preface for an explanation of the icons used in this problems set.
For additional assessment items for this section, go to &% WEBASSIGN
807002 roncower

You are at a carnival playing the “Strike-the-Bell” game, as
1. The goal is to hit the end of the lever
with a hammer, sending a hard object upward along the fric-

shown in Figure TP

tionless vertical track so as to strike a bell at the top. Show-
ing off your control for the crowd, you hit the lever several
times in a row in such a way that the hard object rises to a
height 4 = 4.50 m and just touches the bell, which makes
a gentle ringing sound. Now, to really impress the crowd,
you swing the hammer with a mighty motion, hit the lever,
and project the object upward with twice the initial speed
of your previous demonstrations. Unbeknownst to you,
on the previous demonstration, the bell came loose and
slipped off to the side, so that, on this demonstration, the
object bypasses the bell and is projected straight up into
the air. What is the total time interval between when the
object begins its upward motion and then later lands on the
ground beside the apparatus?

Figure TP2.1

2. Your group is:

0 m. At the

he top of a cliff of he

bottom of the cliff is a pool of water. You split the group in

two. The first half of the group volunteers a member to drop a

Think-Pair-Share 47

X, = ot + o N 2.15

x,=x+ v+ }at 2.16

v,2= v+ 2 (x — x) (2.17
Ve — — —_— R —

rock from rest so that it falls straight downward and makes a
splash in the water. The second half of the group volunteers
a member to, after some time interval has passed since the
first rock was dropped, throw a second rock straight down
ward so that both rocks arrive at the water at the same time.
You test the performance by listening for a single splash
made by the rocks simultancously hitting the water. (a) If the
second rock is thrown 1.00 s after the first rock is released
with what speed must the second rock be thrown? (b) If the
fastest anyone in your group can throw the rock is 40.0 m/s
what is the longest time interval that can pass between the
release of the rocks so that a single splash is heard? (c) If
there is no limit as to how fast the rock can be thrown, what

is the longest time interval that can pass between the release

of the rocks so that a single splash is heard?

LAVAIad Have your partner hold a ruler vertically with the

zero end at the bottom. Place your open finger and thumb
at the zero position. Without warning, your partner should
release the ruler and you should catch it as soon as you see it
moving. From the position of your finger on the ruler, deter-
mine your reaction time. Repeat the experiment a number
of times to estimate the uncertainty in your reaction time.
Have each member of your group catch the ruler and com-
pare your reaction times.

LAIIRE The Acela is an electric train on the Washing-

ton-New York-Boston run, carrying passengers at speeds

as high as 170 mi/h. A velocity-time graph for the Acela is
shown in Figure TP2.4. (a) Describe the train’s motion in
cach successive time interval. (b) Find the train’s peak posi
tive acceleration in the motion graphed. (c) Find the train’s

displacement in miles between (=0 and =200 s
v (mi/h)
200
150

100

0 - - e 1
=50 0 50 100 150 200 250 300

,wr
~100

Figure TP2.4 velocity-time

aph for t}

Acela




tion in One Dimension
Problems 49
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o
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. A particle st 3 ,
: 11 |I article starts from rest a, (m/s?) the single value of an object’s constant acceleration is like
and accelerates as shown 2 knowing a whole list of values for its velocity.”

i y A person rakes a trip, driving with a constant speed of 89,5 in Figure P2.11. Determine 1 o o
e 64 for an xplanation of the icons wied il co ”N km/h, except for a 22.0-min rest stop. If the person’s ayer. (a) the particle’s speed at 16. In Example 2.7, we investigated a jet landing on an aircraft
For By 20 to 2% WEBASSIG! o6 km/h, (a) how much time is 10.0 s and at ¢ = 20.0 0 t(s) carrier. In a later maneuver, the jet comes in for a landing
i emivew age speed is 77.8 km/h, @ ¢ is spent on the 23 ANCE R 5 10 15 20 on solid ground with 10f 100 i 1
S s pel g 9 - . : D & 4 with a speed o m/s, and its acceleratior
” trip and (b) how far does the person tray and (b) the distance trav- 3 |6 ' L. [ n ts ac i
SECTION 2.1 Position, Velocity, and Speed eled in the first 20.0s. can have a maximum magnitude of 5.00 m/s* as it comes to
- ' -2t rest. (a) From the instant the jet touches the runway, what
1. The specd of a nerv the human IIML‘ isabout  gECTION 2.5 Acceleration SECTION 2.6 Motion Diagrams sl is the minimum time interval needed before it can come 1o
100 m /s. If vou accidentally stub your toe in the dark, esumate ' ;

[ BIO] Ifyou " y ) rest? (b) Can this jet land at a sma
8. Achildrollsa marble on a bent track that is 100 cm lung . 12. Draw motion diagrams for est? (b) Can “‘,"' l.md at a small tropical island airport

gra Figure P2.11 where the runway is 0.800 km long? (c) Explain your answer

shown in Figure P2
the marble along the track. On the horizontal sections from

nerve impulse to travel to your brain

¢ it takes th
e it takes th:

8. We use x to represent the position of (a) an object moving to the
right at constant speed, (b) an object moving to the right 17.  An object moving with Alxmlm m acceleration has a velocity
of 12.0 cm/s in the positive xdirection when its x coordinate

2. Aparuclen acC to the equation x = 10£*, where x
(v} '~)H;!“1{u“v’;“ o ’:~l!‘\’v’::!:‘lzv"3"l\“;") };::::i":h"\;:”‘j‘”“fl‘:l”r‘ v=0tox= 20 cm and from x = 40 cm to x . 60 cm, the and speeding up at a constant rate, (c) an object moving T o e
o S R marble mll? with constant speed. f)n the sloping sections, to the right and slowing down at a constant rate, (d) an is ¢ 00 ‘>|n. If its f(nmdln.nl(- 2.00 s later is =5.00 cm, what
the marble’s speed changes steadily. At the places where object moving to the left and speeding up ata constant rate, isits acceleration?
3. The position of a pinewood derby car was observed at vari- the slope changes, the marble stays on the track and does and (¢) an object moving to the left and slowing down at a 18. Solve Example 2.8 by a graphical method. On the same
constant rate. (f) How would your drawings change if the graph, plot position versus time for the car and the trooper

not undergo any sudden changes in speed. The child gives
the marble some initial speed at x = 0 and ¢ = 0 and then
watchesitroll to x = 90 cm, where it turns around, eventually
returning to x = 0 with the same speed with which the child 13. Each of the strobe photographs (a), (b), and (c) in Figure P2.12
was taken of a single disk moving toward the right, which we
take as the positive direction. Within each photograph the time
interval between images is constant. For each photograph, pre-

From the intersection of the two curves, read the time at

ous times; the results are summarized in the following table.
which the trooper overtakes the car.

werage velocity of the car for (a) the first second changes in speed were not uniform, thatis, if the speed were

not ch

b) the last 3 5, and (c) the entire period of observation. nging at a constant rate?

19. A glider of length € moves through a stationary photogate
on an air track. A photogate (Fig. P2.19) is a device that mea-
sures the time interval At, during which the glider blocks

a beam of infrared light passing across the photogate. The

released it. Prepare graphs of xversus ¢, v_versus ¢, and a_ver-
. . . 8 X £
sus #, vertically aligned with their time axes identical, to show

3.0 1.0 5.0
20.7 36.8

t(s) 0 1.0
x(m) 0

the motion of the marble. You will not be able to place num-
bers other than zero on the horizontal axis or on the velocity

sus ¢, and a_versus 4, vertically

pare graphs of x versus £, v, ve
8 '«

ratio v, = €/At, is the average velocity of the glider over this

SECTION 2.2 Instantaneous Velocity and Speed

part of its motion. Suppose the glider moves with constant
acceleration. (a) Argue for or against the idea that v, is equal

to the instantaneous velocity of the glider when it is halfway

aligned with their time axes identical, to show the motion of

oracceleration axes, but show the correct gr aph shapes,
the disk. You will not be able to place numbers other than zero

te leaves one end of a pool of length Lat ¢ = 0

arrives at the other end at time ¢,. She swims ba

arrives at the starting position at time ¢,. If \,",‘IT“I\):‘;L";::{: 100 cm on the axes, but show the correct shapes for the graph lines.
ally in the positive x direction, determine her aver- ¥ through the photogate in space. (b) Argue for or against

1ge velocities symbolically in (a) the first half of the swim, B_20cm the idea that v, is equal to the instantancous velocity of the
z": second half of the swim, and (¢) the round trip. 0 glider when it is halfway through the photogate in time

d) What is her average speed for the round trip?

5. A position-time graph for a particle moving along the -
5 I\n: "‘”"’:'( “"f:*:\‘:w-jnn-‘!'_".:"i @ Find the average velocity 10 cm 60 cm
the insantanesis wiocit) 4t b g 400 s. (b) Determine Figure P2.8

: 2 200 s by measuring the
e tangent line shown in the graph. (c) At what

ue of tis the velocity zero? e
“lt:::"')‘.‘(:l::‘:\\“]: );Zlfalr:h 10-[ v, versus ¢ for the motion of
road in a straight lin “f'\F m;n rest and moves .xh).ng the
the time interval G {-) d lj!( the ay age .nu'l('l‘uu)nlfor
atwhich the accele 10 1= 6.00s. (b) Estimate the time
the value of the “""‘;‘?" has its greatest positive value and .
the acceleration ,;.,:,(-. :;'”"."'. at that instant. (c) When 1s Figure P2.19 Problems 19 and 21
value of the accelerar ) Estimate the maximum negative
ation and the time at which it occurs. 20. Why is the following situation impossible? Starting from rest,
a charging rhinoceros moves 50.0 m in a straight line in
Y (m/s) 10.0 s. Her acceleration is constant during the entire motion,
0 and her final speed is 8.00 m/s
Figure P25 " 21. A glider of length 124 cm moves on an air track with con-
Figure p213 stant acceleration (Fig P2.19). A time interval of 0.628 s
SECTION 2 elapses between the moment when its front end passes a
&L 3 3 Analysis Model: Paricte Under Conslaanelocigy SECTION 2.7 Analysis Model:Pavlicle Ixu[-d point ® along the track and the moment when its
N els along a straight line at a constany Under Constant Acceleration back end passes this point. Next, a time interval of 1.39 s
he or 3 qistance d and then another g g S 4 6 § 10 12 14. An electron in a cathode-ray tube accelerates uniformly clapses between the moment when the back end of the
<tion at another constant speeq B . R from 2.00 X 10* m/s to 6.00 X 10° m/s over 150 em glider passes the point @ and the moment when the front
s pre triP i 30.0 mi/h. a) Wheag jg e 8 Figure 2.9 () In what time interval does the electron travel this 1.50 cm? end of the glider passes a second point ® farther down the
A it £on: g b) What is its acceleration? track. After that, an additional 0.431 s clapses until the back
What If? Suppos i ond dis. o Use the oy i end of the glider passes point ®. (a) Find the average speed
posite 1 cond distance gy, of pos A 1n Problem 3t raph . ing straight tube with a constant g ; X 0. (1 3 (et
e bttt m; o Yot e ,‘ d were i 10N vergy time. (} 0 construct a smooth graph . A parcel of air moving in & b 1 £18.0-m7% at of the glider as it passes point . (b) Find the acceleration
Part (a). Whatis th, < same B *fwnih:;‘,‘,”‘: and \HHN;» curve, find (he i."\')l By constructing tangents (© [QiC] ."“.E‘.H”,,,, of —4.00 m/s* has Jll\‘:l::l n‘\‘ n;” “;“ mm‘ ,,," of the glider. (¢) Explain how you can compute the .!(\(l('l.l
the a g AR for 1} 'y‘\:" in time "m“’i"‘dnh. (©) Plot [h‘.‘»”illrl:‘.”m velocity ofithe £82 l‘f I;m\) “;:, ;ly”:,] b \;\ :::l \l‘\ l::*“;k_‘:) a.m ) |,N“|,;_ the tion without knowing the distance between points @ and €
) e -uulu.uu;n’::';” this imm'“-\li(:x;m([]l:.l[“.lf““ velocty “.l“:; ih),I.;‘,([“( ‘. l’,:‘\I,I;l(’yzl'\'(.h"”\ versus time for this parcel of air p In the particle under constant acceleration model, we
thecary € €L, (d) Whag wae .(1.1-",‘::;:}.,']h\‘;,l:‘(:”.'(,( (© Argue for or against the following statement: “Knowing B identify the variables and parameters v, v, a, 4 and
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initial posi

tion in One Dimension

I | 913-9
x. Of the equations in the model, Equations 2.13-2
x. the second and third do

and the last leaves out

x
the first does not involve x
not contain a_, the fourth omits
1. So, to complete the set. there should be an equation nol

involving © . Derive it from the others.

At 1 = 0. one tov car is set rolling on a straight track with
15.0 cm, initial velocity —3.50 cm/s. and con-

At the same moment, another

stant acceleration 2.40 cm/s
tov car is set rolling on an adjacent track with initial posi-
tion 10.0 cm, initial velocity +5.50 cm/s, and constant accel-

At what time, if any, do the two cars have

n zero. (a
equal speeds? (b) What are their speeds at that time? (c) At
what time(s), if any, do the cars pass each other? (d) What
are their locations at that time? (¢) Explain the difference
between question (a) and question (c) as clearly as possible

. You are observing the poles along the side of the road as

B described in the opening storyline of the chapter. You have

already stopped and measured the distance between adjacent
poles as 40.0 m. You are now driving again and have activated
your smartphone stopwatch. You start the stopwatch at £ = 0
as you pass pole #1. At pole #2, the stopwatch reads 100 s.
At pole #3, the stopwatch reads 25.0 s. Your friend tells you
that he was pressing the brake and slowing down the car uni-
formly during the entire time interval from pole £l to pole
#3. (a) What was the acceleration of the car between poles #1
and #32 (b) What was the velocity of the car at pole #12 (c) If
the motion of the car continues as described, what is the
number of the last pole passed before the car comes 1o rest?

SECTION 2.8 Freely Falling Objects

| Ne

resistance.

ste: In

all problems in this section, ignore the effects of air

Why is the following situation

impossible? Emily challenges
David to catch a $1 bill
as follows. She holds the
bill vertically as shown in
Figure P2.25, with the cen-
ter of the bill between but
vt touching David's index
ger and thumb. Without

2. Emily releases the
bill. David catches the bill

without moving his hand

Figure P2.25

downward. David' reaction time

is equa .
human reaction time qual to the average

An attacker at the base of a castle v
rock straight up with s

above the ground

all 3,65 m high throw

peed 740 m/s from a heightof | -
(@) Will the rock re. ¢
) 130, what is its spee d
speed must ¢

55m
; ach the top of he
atthe top? If nc

. . Ot what iniyj,

¥ have to reach the top? (c) Ry
speed of a rock th,

wall? (&

Find hang,
chan
8¢ in
wn straight down f; he top of
he

peed of 7.
f 740 m/s and Mmoving between g},
e

same two points. (d an,
po ANge in speed q 3
Ing rock agree with the et

wall at an muial

STk o Does the ch

change o magnitude of the speeq

ard between the same

¥ it does or does not a,

f th \
f the rock moving
moving upw

Hons® (¢ 1
% (€) Explain physically wh cleva-
The height of gree.

a helicopte
h = 300 paes

above * R

the ground is giver |
eters /
b a0d £is in secongs, 4,
ter releases a smal|
= 20080 all mailhag
s e elcopter e 13ilbag. How long

1bag reach the groyngs

! where 4 is in m
1= 2005, the helico

Autory
lotive ep
s ] neers refe,

A ball is thrown upward (‘lf)ll] the ground with an initia)

speed of 95 m/s; at the same instant, another |?il” is (""’Ppc(l

from a building 15 m high. After how long will the balls

at the same height above the

29, A student throws a set of keys vertically upward to her soror-

ity sister, who is in a window 4.00 m above. The second

student catches the keys 1.50 s later. (a) With what initig)

velocity were the keys throw n? (b) What was the velocity of
the keys just before they were caught?

ground?

30. Attime (= 0,a student throws a set of keys vertically upward
{0 her sorority sister, who is in a window at distance % above,
The second student catches the keys at time £. (a) With whag
initial velocity were the keys thrown? (b) What was the veloc.
ity of the keys just before they were caught?

31. You have been hired by the prosecuting attorney as an expert
witness in a robbery case. The defendant is accused of steal-
ing an expensive and massive diamond ring in its box from
a jewelry store. A witness to the alleged crime testified that
she saw the defendant run from the store, stop next to an
apartment building, and throw the box straight upward to
an accomplice leaning out a fourth-floor window. When cap-
tured, the defendant did not have the stolen box with him
and claimed innocence. When the witness testified in court
about the defendant’s throwing of the box to an accomplice,
the defending attorney argued that it would be impossible to
lvhmw the box upward that high to reach the window in ques-
tion. The bottom of the window is 19.0 m above the sidewalk.
Yol:x have set upa demonstration in which the defendant was
;sc :uzl::;:dsd:-:’:’: a I:)asch:lll horizonml.ly as fastas
i m} e Ma: ’uscd (o.dclcruunc that he
R i s‘.l(:;) Vhat testimony can you pro-
e q“miong i ‘cw efendant to Ihr(‘)w the box to the
e abqu; 45 1at argument might the defense
S o l!)c n,c(‘ss used to develop your expert
i rmfumc your counter argument? Ignore
e on the box.

SECTION 2.9 Kinematic Equations Derived from Calculus

32. Astudent drives amoped
along 2 straight  road
as  described by the
velocity-time graph in
Figure 2,39, Sketch this
8raph in the middje of
a sheet of 8raph paper
(@ Direcyly above \uur’
graph, sketch 3 graph of
lh.(‘ Position versus time
;||1g|m|g the time mur—‘
dinates of the two gr

v, (m/s)
8

Figure P2.32

Cration vergy time (|1|')!"' (b) Sketch a graph of the accel-

3gain aligning the ,; irectly below the velocity—time graph,

the numericy) ‘a:l ljmc coordinates. On each graph, show

tion, (¢) What i ;u of x and a, for all points of inflec-

the position (yej, e acceleration at ¢ = 6,00 5> (d) Find

() Whatjs g ative to the starting point) at ¢ = 6.00 s
¢ Moped’s fina| Position at ( = ‘()0 s? .

jerk” ’\““:':_’ :’:‘ l:'!l(' rate of change of ‘.I(‘(‘('|-
"N thatits jerk ri constay 1 object moves in one dlll‘ll‘ll‘
that iullrf(..!,""“"" a,(0), veloci Nt (a) Determine expressions
Init, 'm“ ity ’_’,(1). and position x(1), given

on, velocity, and position are a,, ¥y

al accele,
and x e, y
« TESpectively, (b)
- (b) Show 2
oW that ¢ * = a2+ 2 —v,)

€Tation a5 e «

100 such g,
for its

———

ADDITIONAL PROBLEMS

34.
5]

36.

38.

In Figure 2.11b, the area under the velocity-time graph
and between the vertical axis and time ¢ (vertical dashed
line) represents the displacement. As shown, this area con-
sists of a rectangle and a triangle. (a) Compute their areas.
(b) Explain how the sum of the two areas compares with the
expre n on the right-hand side of Equation 2.16.

I'he froghopper Philaenus spumarius is supposedly the best

Jumper in the animal kingdom. To start a jump, this insect

1ce of 2.00 mm as it

can accel 00 km/s? over a dista
straightens its specially adapted “jumping legs.” Assume the
acceleration is constant. (a) Find the upward velocity with
which the insect takes off. (b) In what time interval does it
reach this velocity? () How high would the inscct jump if
air resistance were negligible? The actual height it reaches is
about 70 cm, so air resistance must be a noticeable force on
the leaping froghopper.

A woman is reported to have fallen 144 ft from the 17th
floor of a building, landing on a metal ventilator box that
she crushed to a depth of 18.0 in. She suffered only minor
injuries. Ignoring air resistance, calculate (a) the speed of
the woman just before she collided with the ventilator and
(b) her average acceleration while in contact with the box.
(c) Modeling her acceleration as constant, calculate the
time interval it took to crush the box.

At t = 0, one athlete in a race running on a long, straight
track with a constant speed v, is a distance @, behind a sec-
ond athlete running with a constant speed v,. (a) Under
what circumstances is the first athlete able to overtake the
second athlete? (b) Find the time ¢ at which the first athlete
overtakes the second athlete, in terms of d,, v, and v,. (c)
Atwhat minimum distance d, from the leading athlete must
the finish line be located so that the trailing athlete can at
least tie for first place? Express d, in terms of d,, v,, and v, by

using the result of part (b).

Why is the following situation impossible? A freight train is lum-
bering along at a constant speed of 16.0 m/s. Behind the
freight train on the same track is a passenger train traveling
in the same direction at 40.0 m/s. When the front of the pas-
senger train is 58.5 m from the back of the freight train, the
engincer on the passenger train recognizes the danger and
hits the brakes of his train, causing the train to move with
acceleration —3.00 m/s%. Because of the ¢ ngineer’s action,

the trains do not collide.

Hannah tests her new sports car by racing with Sam, an
experienced racer. Both start from rest, but Hannah
leaves the starting line 1.00 s after Sam does. Sam moves
with a constant acc 50 m/s?, while Hannah
maintains an acceleration of 4.90 m/s?. Find (a) the time at
which Hannah overtakes Sam, (b) the distance she travels
and () the speeds of both cars at the

before she catches him, 2
instant Hannah overtakes Sam.

Two objects, A and B, are connected by hinges to a rigvul
rod that has a length L. The objects slide along perpendic-
ular guide rails as shown in Figure P2.40. Assume object A
slides to the left with a constant speed v. () Find the veloc-
ity v, of object B as a function of the angle 6. (b) Describe v,

Problems 51

relative to v. Is v, always smaller y
than v, larger than v, or the same
as o, or does it have some other
x

relationship?

Lisa rushes down onto a subway y

platform to find her train already Py
departing. She stops and watches ¥

the cars go by. Each car is 8.60 m O x
long. The first moves past her in

1.50 s and the second in 1.10 s. Figure P2.40
Find the constant acceleration of

the train.

CHALLENGE PROBLEMS

42,

43.

44,

Two thin rods are fastened to

the inside of a circular ring as

shown in Figure P2.42. One

rod of length D is vertical, and

the other of length L makes an
angle 0 with the horizontal. The

two rods and the ring lie in a

vertical plane. Two small beads

are free to slide without friction -
along the rods. (a) If the two E
beads are released from rest
simultancously from the posi- Figure P2.42
tions shown, use your intuition

and guess which bead reaches the bottom first. (b) Find an
expression for the time interval required for the red bead o
fall from point @ to point © in terms of gand D. (¢) Find an
expression for the time interval required for the blue bead
to slide from point ® to point © in terms of g L, and 6.
(d) Show that the two time intervals found in parts (b) and
(c) are equal. Hint: What is the angle between the chords of
the circle ® ® and ® ©? (e) Do these results surprise you?
Was your intuitive guess in part (a) correct? This problem
was inspired by an article by Thomas B. Greenslade, Jr.,
“Galileo’s Paradox,” Phys. Teach. 46, 294 (May 2008).

ting uniformly, Lau

In a women’s 100-m race, accel
takes 2,00 s and Healan 3.00 s to attain their maximum
speeds, which they each maintain for the rest of the race.
They cross the finish line simultancously, both setting a
world record of 10.4 s. (a) What is the acceleration of each
sprinter? (b) What are their respective maximum speeds?
(c) Which sprinter is ahead at the 6.00-s mark, and by how
much? (d) What is the maximum distance by which Healan
is behind Laura, and at what time does that occur?

Review. You are sitting in your car at rest at a traffic light
with a bicyclist at rest next to you in the adjoining bicy-
cle lane. As soon as the traffic light turns green, your car
speeds up from rest to 50.0 mi/h with constant acc eleration
9.00 mi/h/s and thereafter moves with a constant speed of
50.0 mi/h. At the same time, the cyclist speeds up from
rest to 20.0 mi/h with constant acceleration 13.0 mi/h/s
ter moves with a constant speed of 20.0 mi/h.

and the
(a) For what time interval after the light turned green is
the bicycle ahead of your car? (b) What is the maximum
distance by which the bicycle leads your car during this

time interval?




